Home > Press > Research reveals shocking new way to create nanoporous materials: Research demonstrates simple, scaleable method with realistic capability of industrial cross-over
Abstract:
Scientists have developed a new method of creating nanoporous materials with potential applications in everything from water purification to chemical sensors.
In order to produce a porous material it is necessary to have multiple components. When the minor component is removed, small pores are left in its place. Until now, creating nanoporous materials was limiting as it was believed the minor component had to be connected throughout the structure as well as to the outside in order for it to be removed.
However, new research published today (Sunday, 27 November) in the journal Nature Materials has demonstrated a much more effective, flexible method called collective osmotic shock (COS) for creating porous structures. The research, by scientists at the University of Cambridge, has shown how by using osmotic forces even structures with minor components entirely encapsulated in a matrix can be made porous (or nanoporous).
The lead author, Dr Easan Sivaniah from the University of Cambridge's Cavendish Laboratory, explains how the process works: "The experiment is rather similar to the classroom demonstration using a balloon containing salty water. How does one release the salt from the balloon? The answer is to put the balloon in a bath of fresh water. The salt can't leave the balloon but the water can enter, and it does so to reduce the saltiness in the balloon. As more water enters, the balloon swells, and eventually bursts, releasing the salt completely.
"In our experiments, we essentially show this works in materials with these trapped minor components, leading to a series of bursts that connect together and to the outside, releasing the trapped components and leaving an open porous material."
The researchers have also demonstrated how the nanoporous materials created by the unique process can be used to develop filters capable of removing very small dyes from water.
Dr Sivaniah added: "It is currently an efficient filter system that could be used in countries with poor access to fresh potable water, or to remove heavy metals and industrial waste products from ground water sources. Though, with development, we hope it can also be used in making sea-water drinkable using low-tech and low-power routes."
Other applications were explored in collaboration with groups having expertise in photonics (Dr Hernan Miguez, University of Sevilla) and optoelectronics (Professor Sir Richard Friend, Cavendish Laboratory). Light-emitting devices were demonstrated using titania electrodes templated from COS materials whilst the novel stack-like arrangement of materials provide uniquely efficient photonic multilayers with potential applications as sensors that change colour in response to absorbing trace amounts of chemicals, or for use in optical components.
Dr Sivaniah added, "We are currently exploring a number of applications, to include use in light-emitting devices, solar cells, electrodes for supercapacitors as well as fuels cells."
Notes to editors:
1. The paper 'Collective osmotic shock in ordered materials' will be published in the 27 November 2011 edition of Nature Materials.
2. The work was funded by the Qatar Foundation (QNRF), EPSRC, CONACyT, and the Spanish Ministry of Science.
####
For more information, please click here
Contacts:
Easan Sivaniah
University of Cambridge
Department of Physics
Cavendish Laboratory
Tel.: 44-1223-337267
E-Mail.:
Copyright © University of Cambridge
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||