Home > Press > Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance
![]() |
Matthias Young Credit University of Missouri |
Abstract:
From electric vehicles to wireless earbuds, traditional lithium-ion batteries power our daily lives as they charge fast and store plenty of energy. However, they rely on a solution known as liquid electrolyte, which can catch on fire if damaged or overheated.
University of Missouri researchers may have a solution. Assistant Professor Matthias Young and team are figuring out how to use solid electrolytes instead of liquids or gels to make solid-state batteries, which are safer and more energy efficient.
“When the solid electrolyte touches the cathode, it reacts and forms an interphase layer that’s about 100 nanometers thick — 1,000 times smaller than the width of a single human hair,” said Young, who has joint appointments in Mizzou’s College of Engineering and College of Arts and Science. “This layer blocks the lithium ions and electrons from moving easily, increasing resistance and hurting battery performance.”
Understanding this issue with solid-state batteries — and how to overcome it — has vexed scientists for more than a decade.
Young’s team tackled the problem by better understanding the root cause.
Using four-dimensional scanning transmission electron microscopy (4D STEM), the researchers examined the atomic structure of the battery without taking it apart — a revolutionary breakthrough for the field. This novel process allowed them to gain a fundamental understanding of the chemical reactions happening inside batteries, ultimately determining that the interphase layer was the culprit.
A potential solution
From electric vehicles to wireless earbuds, traditional lithium-ion batteries power our daily lives as they charge fast and store plenty of energy. However, they rely on a solution known as liquid electrolyte, which can catch on fire if damaged or overheated.
University of Missouri researchers may have a solution. Assistant Professor Matthias Young and team are figuring out how to use solid electrolytes instead of liquids or gels to make solid-state batteries, which are safer and more energy efficient.
“When the solid electrolyte touches the cathode, it reacts and forms an interphase layer that’s about 100 nanometers thick — 1,000 times smaller than the width of a single human hair,” said Young, who has joint appointments in Mizzou’s College of Engineering and College of Arts and Science. “This layer blocks the lithium ions and electrons from moving easily, increasing resistance and hurting battery performance.”
Understanding this issue with solid-state batteries — and how to overcome it — has vexed scientists for more than a decade.
Young’s team tackled the problem by better understanding the root cause.
Using four-dimensional scanning transmission electron microscopy (4D STEM), the researchers examined the atomic structure of the battery without taking it apart — a revolutionary breakthrough for the field. This novel process allowed them to gain a fundamental understanding of the chemical reactions happening inside batteries, ultimately determining that the interphase layer was the culprit.
A potential solution
Young’s lab specializes in thin-films formed by a vapor-phase deposition process known as oxidative molecular layer deposition (oMLD). Now, he plans to test whether his lab’s thin-film materials can form protective coatings to prevent the solid electrolyte and cathode materials from reacting with each other.
“The coatings need to be thin enough to prevent reactions but not so thick that they block lithium-ion flow,” he said. “We aim to maintain the high-performance characteristics of the solid electrolyte and cathode materials. Our goal is to use these materials together without sacrificing their performance for the sake of compatibility.”
This carefully engineered approach at the nanoscale level will help ensure these materials work together seamlessly — making solid-state batteries one step closer to reality.
“Understanding Cathode–Electrolyte Interphase Formation in Solid State Li-Ion Batteries via 4D-STEM” was published in Advanced Energy Materials. Co-authors are Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta and Xiaoqing He at Mizzou.
Young’s lab specializes in thin-films formed by a vapor-phase deposition process known as oxidative molecular layer deposition (oMLD). Now, he plans to test whether his lab’s thin-film materials can form protective coatings to prevent the solid electrolyte and cathode materials from reacting with each other.
“The coatings need to be thin enough to prevent reactions but not so thick that they block lithium-ion flow,” he said. “We aim to maintain the high-performance characteristics of the solid electrolyte and cathode materials. Our goal is to use these materials together without sacrificing their performance for the sake of compatibility.”
This carefully engineered approach at the nanoscale level will help ensure these materials work together seamlessly — making solid-state batteries one step closer to reality.
“Understanding Cathode–Electrolyte Interphase Formation in Solid State Li-Ion Batteries via 4D-STEM” was published in Advanced Energy Materials. Co-authors are Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta and Xiaoqing He at Mizzou.
####
For more information, please click here
Contacts:
Eric Stann
University of Missouri-Columbia
Office: 573-882-3346
Copyright © University of Missouri-Columbia
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Possible Futures
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |