Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies

Schematics of artificially tilted multilayer for transverse thermoelectric conversion developed in this research.

Credit
Takamasa Hirai, National Institute for Materials Science; Ken-ichi Uchida, National Institute for Materials Science
Schematics of artificially tilted multilayer for transverse thermoelectric conversion developed in this research. Credit Takamasa Hirai, National Institute for Materials Science; Ken-ichi Uchida, National Institute for Materials Science

Abstract:
1. A research team from NIMS and UTokyo has proposed and demonstrated that the transverse magneto-thermoelectric conversion in magnetic materials can be utilized with much higher performance than previously by developing artificial materials comprising alternately and obliquely stacked multilayers of a magnetic metal and semiconductor.

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies

Tokyo, Japan | Posted on December 13th, 2024

2. When a temperature gradient is applied to a magnetic conductor, a charge current is generated in a direction orthogonal to directions of both temperature gradient and magnetization of the magnetic conductor. This transverse magneto-thermoelectric phenomenon, known as the anomalous Nernst effect (ANE), has attracted considerable interest for potentially versatile, durable, and low-cost thermoelectric applications. Currently, the search for new magnetic materials focusing on topological natures of materials is being actively pursued with the aim of further improving the performance of ANE. Despite these efforts, no material has yet been identified with the performance of ANE at room temperature exceeding that of a cobalt-based topological magnet, i.e., Co2MnGa, reported in 2018, limiting further progress in this field. In addition, even this current record-high performance of Co2MnGa would have to be improved around more than 100 times for practical thermoelectric applications.

3. This research team recently developed an artificially tilted multilayer composed of alternating layers of a magnetic metal and semiconductor to simultaneously exhibit both the off-diagonal Seebeck effect (ODSE) and ANE (see Figure). Here, ODSE realizes the transverse thermoelectric conversion arising from tilted multilayer structures without the need for external magnetic fields or magnetization. The team demonstrated that the dimensionless figure of merit for ANE in the artificial material was improved by more than one order, compared to that of the same single magnetic metal alone, owing to the synergetic action of ANE and ODSE. These findings indicate that factors, such as certain physical parameters and structures, which have not been the focus of previous studies on ANE, are important for improving the performance of transverse thermoelectric conversion.

4. This research provides new guidelines for the design of new materials for transverse thermoelectric conversion materials based on structural design, as well as new ways of utilizing ANE, from a completely different perspective from the previous research. Based on these guidelines, the research team aims to develop artificial materials with high thermoelectric performance for practical applications such as power generation using waste heat and electronic cooling and heat sensing technologies.

***

5. This project was carried out by Takamasa Hirai (Researcher, Research Center for Magnetic and Spintronic Materials (CMSM), NIMS), Fuyuki Ando (Special Researcher, CMSM, NIMS), Hossein Sepehri-Amin (Group Leader, CMSM, NIMS) and Ken-ichi Uchida (Distinguished Group Leader, CMSM, NIMS; Professor, Department of Advanced Materials Science, Graduate School of Frontier Sciences, UTokyo).
This work was supported by ERATO “Uchida Magnetic Thermal Management Materials Project” from JST, Japan.

6. This research was published in Nature Communications, an open access journal, at 7:00 pm on November 14, 2024, Japan Time.

####

For more information, please click here

Contacts:
Media Contact

Yasufumi Nakamichi
National Institute for Materials Science, Japan

Office: 81-29-859-2105

Expert Contacts

Takamasa Hirai
National Institute for Materials Science


Ken-ichi Uchida
National Institute for Materials Science


Copyright © National Institute for Materials Science, Japan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project