Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting

By utilizing the 2D-MOF as self-sacrificial template selenium-containing materials had been produced via simple method, which exhibits the efficient activity for overall water splitting

CREDIT
HIGHER EDUCATION PRESS
By utilizing the 2D-MOF as self-sacrificial template selenium-containing materials had been produced via simple method, which exhibits the efficient activity for overall water splitting CREDIT HIGHER EDUCATION PRESS

Abstract:
Transition metal selenides have been considered to be a good choice for electrocatalytic water splitting. In addition, Metal-organic frameworks (MOFs) have been used to make catalysts with good electrocatalytic capabilities. Traditionally, the MOF-derived selenides are produced via the self-sacrificing MOF template methods. However, this strategy is high-energy consuming, and it is difficult to precisely control the structure and component homogeneity of the product during pyrolysis.

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting

Beijing, China | Posted on March 8th, 2024

A research group of Wang-ting Lu, Fan Yu, and Yun Zheng from Jianghan University and Fuzhou University used two-dimensional (2D) layered metal-organic frameworks (MOFs) as self-sacrificial templates to create high-efficiency Selenium (Se)-containing electrocatalysts for overall water splitting. They adopted two strategies to introduce Se element into the Co–Fe MOF, one being the etching of as-prepared MOF by SeO2 solution and the other, the replacing of SCN− with SeCN− as the construction unit. The electrochemical activity of Se-containing electrocatalysts for catalyzing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is evaluated and further discussed.

It is found that both two Se introducing approaches can obviously improve the HER performance during overall water splitting. The high electrochemical performance may be resulted from the unique 2D hierarchical porous structure and strong synergistic effect between different components in the material.

This work reveals that the rational design of layered MOFs with S- or Se-containing linkers as water splitting catalysts is a feasible option for the development of economical and low-energy-consuming electrocatalysts. Meanwhile, it provides an innovative approach for the synthesis of MOF-based metallic selenides.

####

For more information, please click here

Contacts:
Rong Xie
Higher Education Press

Office: 105-855-6485

Copyright © Higher Education Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Water

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project