Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Truly Integrated Circuit is Printed and Flexible

Courtesy the Holst Centre
Courtesy the Holst Centre

Abstract:
For 40 years, so called integrated circuits have integrated little more than transistors, diodes and sensors onto one piece of material but now there are much more integrated circuits arriving where most electrical and electronic components are co-deposited on flexible substrates. Those flexible substrates are key, because this new electronics will be affordable and desirable on everything from apparel to human skin and electrical and consumer packaged goods, where surfaces are only rarely flat.

By Dr Peter Harrop, Chairman, IDTechEx

The Truly Integrated Circuit is Printed and Flexible

Cambridge, UK | Posted on March 24th, 2010

Savvy designers, seeking to use the new electronics to create "The iPod of labels", or some other blockbuster product, think of the flexible substrate as part of functioning of the product. For example, there as flexible films that emit and detect ultrasound, act as loudspeakers or change shape under an electrical field. The latter use electroactive polymer film and the recent purchase of Artificial Muscle Inc AMI by Bayer MaterialScience is a nice reminder that there are plenty of
exits for venture capitalists backing these new printed electronics companies.

Stretchable electronics

AMI polymer films, with printed stretchable electrodes, are used in the development, design and manufacture of actuators and sensing components. They offer significant advantages over traditional technologies used in this area. They provide touchscreen panels in consumer electronics with "awareness through touch" by creating authentic tactile feedback, just like a conventional keyboard. This innovative technology has significant application potential, particularly for electronic devices like smart phones, gaming controllers and touchpads. AMI initially targeted products for a range of applications including valves, pumps, positioners, power generation, snake-like, self-aiming camera lenses and sensors. With the emergent need for haptics in consumer electronics, particularly in touchscreens, AMI used EPAM™ to create the Reflex™ brand of haptic actuators. These products are targeted at a wide range of consumer electronics including smartphones and other portable electronics, computer peripherals, gaming controllers and touchpads.

Meanwhile, MC10 Inc, a company formed to commercialize stretchable electronics, has recently made a licensing agreement with the University of Illinois at Urbana-Champaign. According to the terms of the agreement, MC10 Inc. will gain access to technology contained in patents dealing with stretchable silicon technology from Professor John Rogers' laboratory. The venture-backed startup is currently developing processes and applications that enable high performance electronics to be placed in novel environments and form factors. MC10's approach transforms traditionally rigid, brittle semiconductors into flexible, stretchable electronics while retaining excellent electrical performance. Stretchable silicon allows for a degree of design freedom capable of expanding the functionality of existing products whilst providing a platform on which new microelectronic-enabled applications can be developed.

Surgery

In a completely different approach, the electroactive devices of Artificial Muscle AB in Sweden, with stretchable printed electrodes, make surgeons' tools snake through the human body. Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature speakers. Control and monitoring electronics and electrics can be printed onto this new smart paper. The material is made by impregnating ordinary paper - even newsprint - with a mixture of mineral oil and "magnetic nanoparticles" of iron oxide. The nanoparticle-laden paper can then be moved using a magnetic field.

"Paper is a porous matrix, so you can load a lot of this material into it," said Babak Ziaie, a professor of electrical and computer engineering and biomedical engineering.

The new technique represents a low-cost way to make small stereo speakers, miniature robots or motors for a variety of potential applications, including tweezers to manipulate cells and flexible fingers for minimally invasive surgery.

"Because paper is very soft it won't damage cells or tissue," Ziaie said. "It is very inexpensive to make. You put a droplet on a piece of paper, and that is your actuator, or motor."

cPaper

Kimberley Clark is one of the latest to announce a smart substrate suitable for printed electronics. Its cPaperTM is paper impregnated with carbon rather than the more expensive carbon nanotubes and it can be used as heating elements, electrodes in printed supercapacitors and supercabatteries and in many other applications.

Organic impregnated conductive paper

In a different approach, the University of Uppsala in Sweden may be on the way to improved printed batteries. It is developing a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g−1 and batteries based on this material can be charged with currents as high as 600 mA cm−2 with only 6% loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g−1 or 38−50 mAh g−1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems.

Paper-e

Also newly arrived is the Paper-e of the New University of Lisbon, which is an inspired way of printing transistor circuits by making the gate of the transistor the paper substrate itself. Interestingly, these transistors, made with the superior, new zinc oxide based printed semiconductors, have much better characteristics than one would expect at first sight and the physics of this is currently being clarified. Needless to say, all the above smart papers for printed electronics can be environmental and biodegradable.

Printed smart shelf

Plastic Electronic GmbH in Austria specialises in capacitive printed electronic structures. For example, its smart shelf consists of polymer film that deforms when things are placed on it and the crossbar conductive patterns on both sides monitor the change in capacitance and thus the position and relative weight of what is on the shelf. Now NTERA, Inc., a leader in all-printed, flexible, colour change display technologies, and plastic electronic GmbH, have entered into a license agreement to develop advanced printed electronics products using NTERA's flexible printed electrochromic displays.

Piezo flags and eels

Polyvinylidene difluoride PVDF and its derivatives are made into ferroelectric ink used to print non- volatile rewritable random access memory on flexible film. It can also form a film itself that forms a smart substrate for printed electronics, examples being electret microphones and energy harvesting "flags" and, under the water, "eels".

Smart barriers

Barrier layers to protect delicate printed organic photovoltaic and OLED displays are receiving close attention. Hugely improved barrier layer substrate film is announced by DNP & 3M Display & Graphics Business Lab and companies such as DELO are developing barrier adhesives and inks to go over the patterns printed on these barrier films and to seal encapsulation.

Edible and transparent electronics

Edible printed electronics from Eastman Kodak and Somark Innovations is initially intended to be applied directly to food, pharmaceutical tablets and meat but edible substrates will also be needed, preferably leveraging the electronic functions. Then there is the new discipline of transparent electronics being pursued by Hewlett Packard, Cambridge University in the UK and Fraunhofer ISC in Germany for example.

The largest event on the subject

The largest event on the subject is Printed Electronics Europe and many of the above organisations will be presenting as well as other leaders from across the world. The event will run 13-14 April in Dresden, Germany and includes two full days of conference and exhibition, Masterclasses, and Company Tours.

For full details and to register, visit www.IDTechEx.com/peEUROPE.

IDTechEx Dates:

Printed Electronics EUROPE 2010 | April 13-14 | Dresden, Germany www.IDTechEx.com/peEUROPE

Photovoltaics EUROPE 2010 | April 13-14 | Dresden, Germany www.IDTechEx.com/pvEUROPE

Energy Harvesting & Storage EUROPE 2010 | May 26-27 | Munich, Germany www.IDTechEx.com/Munich

Wireless Sensor Networks & RTLS Summit EUROPE 2010 | May 26-27 | Munich, Germany www.IDTechEx.com/Munich

RFID Europe | September 28-29 | Cambridge, UK www.IDTechEx.com/rfidEUROPE

Energy Harvesting & Storage USA 2010 | November | Boston

Wireless Sensor Networks & RTLS Summit USA 2010 | November | Boston

Printed Electronics USA 2010 | Dec 1-2 | Santa Clara, CA www.IDTechEx.com/peUSA

Photovoltaics USA 2010 | Dec 1-2 | Santa Clara, CA www.IDTechEx.com/peUSA

####

For more information, please click here

Contacts:
Media and Press
+ 44 (0) 1223 813703


Cara Van Heest
Marketing Manager
1 617 577 7890

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project