Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip

Semiconductor quantum chip with quantum bus of the JARA cooperation of Forschungszentrum Jülich and RWTH Aachen University
CREDIT
Forschungszentrum Jülich / Sascha Kreklau
Semiconductor quantum chip with quantum bus of the JARA cooperation of Forschungszentrum Jülich and RWTH Aachen University CREDIT Forschungszentrum Jülich / Sascha Kreklau

Abstract:
Millions of quantum bits are required for quantum computers to prove useful in practical applications. The scalability is one of the greatest challenges in the development of future devices. One problem is that the qubits have to be very close to each other on the chip in order to couple them together. Researchers at Forschungszentrum Jülich and RWTH Aachen University have now come a significant step closer to solving the problem. They succeeded in transferring electrons, the carriers of quantum information, over several micrometres on a quantum chip. Their "quantum bus" could be the key component to master the leap to millions of qubits.

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip

Juelich, Germany | Posted on September 23rd, 2022

Quantum computers have the potential to vastly exceed the capabilities of conventional computers for certain tasks. But there is still a long way to go before they can help to solve real-world problems. Many applications require quantum processors with millions of quantum bits. Today’s prototypes merely come up with a few of these compute units.

"Currently, each individual qubit is connected via several signal lines to control units about the size of a cupboard. That still works for a few qubits. But it no longer makes sense if you want to put millions of qubits on the chip. Because that' s necessary for quantum error correction," says Dr. Lars Schreiber from the JARA Institute for Quantum Information at Forschungszentrum Jülich and RWTH Aachen University.

At some point, the number of signal lines becomes a bottleneck. The lines take up too much space compared to the size of the tiny qubits. And a quantum chip cannot have millions of inputs and outputs - a modern classical chip only contains about 2000 of these. Together with colleagues at Forschungszentrum Jülich and RWTH Aachen University, Schreiber has been conducting research for several years to find a solution to this problem.

Their overall goal is to integrate parts of the control electronics directly on the chip. The approach is based on so-called semiconductor spin qubits made of silicon and germanium. This type of qubit is comparatively tiny. The manufacturing processes largely match those of conventional silicon processors. This is considered to be advantageous when it comes to realising very many qubits. But first, some fundamental barriers have to be overcome.

"The natural entanglement that is caused by the proximity of the particles alone is limited to a very small range, about 100 nanometres. To couple the qubits, they currently have to be placed very close to each other. There is simply no space for additional control electronics that we would like to install there," says Schreiber.

To set the qubits apart, the JARA Institute for Quantum Information (IQI) came up with the idea of a quantum shuttle. This special component should help to exchange quantum information between the qubits over greater distances. The researchers have been working on the "quantum bus" for five years and have already filed more than 10 patents. The research began as part of the European QuantERA consortium Si-QuBus and is now being continued in the national project QUASAR of the Federal Ministry of Education and Research (BMBF) together with industrial partners.

"About 10 micrometres have to be bridged from one qubit to the next. According to theory, millions of qubits can be realized with such an architecture. We recently predicted this in collaboration with circuit engineers from the Central Institute for Engineering, Electronics and Analytics at Forschungszentrum Jülich," explains IQI Institute Director Prof. Hendrik Bluhm. Researchers at TU Delft and Intel have also come to this same conclusion.

An important step has now been achieved by Lars Schreiber and his team. They succeeded in transporting an electron 5000 times over a distance of 560 nanometres without any significant errors. This corresponds to a distance of 2.8 millimetres. The results were published in the scientific journal npj Quantum Information.

„Surfing“ electrons

One essential improvement: the electrons are driven by means of four simple control signals, which – in contrast to previous approaches – do not become more complex over longer distances. This is important because otherwise extensive control electronics would be required, which would take up too much space – or could not be integrated on the chip at all.

This achievement is based on a new way of transporting electrons. "Until now, people have tried to steer the electrons specifically around individual disturbances on their path. Or they created a series of so-called quantum dots and let the electrons hop from one of these dots to another. Both approaches require precise signal adjustment, which results in too complex control electronics," explains Lars Schreiber. "In contrast, we generate a potential wave on which the electrons simply surf over various sources of interference. A few control signals are sufficient for such a uniform wave; four sinusoidal pulses is all it takes."

As a next step, the physicists now want to show that the qubit information encoded in the electron spin is not lost during transportation. Theoretical calculations have already shown that this is possible in silicon in certain speed ranges. The quantum bus thus paves the way to a scalable quantum computer architecture that can also serve as a basis for several million qubits.

####

For more information, please click here

Contacts:
Tobias Schloesser
Forschungszentrum Juelich

Office: +49-246-161-4771

Expert Contacts

Prof. Hendrik Bluhm
Forschungszentrum Jülich, JARA-Institute Quantum Information (PGI-11)


Dr. Lars Schreiber
Forschungszentrum Jülich, JARA-Institute Quantum Information (PGI-11)

Copyright © Forschungszentrum Juelich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Quantum Computing

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project