Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles

Images of uncoated (top left, right) and coated (bottom left, right) nylon-6,6 fabrics after nine washing cycles taken by a scanning electron microscope.

CREDIT
Image: Sudip Lahiri
Images of uncoated (top left, right) and coated (bottom left, right) nylon-6,6 fabrics after nine washing cycles taken by a scanning electron microscope. CREDIT Image: Sudip Lahiri

Abstract:
A team of University of Toronto Engineering researchers, led by Professor Kevin Golovin, have designed a solution to reduce the amount of microplastic fibres that are shed when clothes made of synthetic fabrics are washed.

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles

Toronto, Canada | Posted on January 27th, 2023

In a world swamped by fast fashion — an industry that produces a high-volume of cheaply made clothing at an immense cost to the environment — more than two-thirds of clothes are now made of synthetic fabrics.

When clothes made from synthetic fabrics, such as nylon, polyester, acrylic and rayon, are washed in washing machines, the friction caused by cleaning cycles produces tiny tears in the fabric. These tears in turn cause microplastic fibres measuring less than 500 micrometres in length to break off and make their way down laundry drains to enter waterways.

Once microplastics end up in oceans and freshwater lakes and rivers, the particles are difficult to remove and will take decades or more to fully break down. The accumulation of this debris in bodies of water can threaten marine life. It can also become part of the human food chain through its presence in food and tap water, with effects on human health that are not yet clear.

Governments around the world have been looking for ways to minimize the pollution that comes from washing synthetic fabrics. One example is washing machine filters, which have emerged as a leading fix to stop microplastic fibres from entering waterways. In Ontario, legislative members have introduced a bill that would require filters in new washing machines in the province.

“And yet, when we look at what governments around the world are doing, there is no trend towards preventing the creation of microplastic fibres in the first place,” says Golovin.

“Our research is pushing in a different direction, where we actually solve the problem rather than putting a Band-Aid on the issue.”

Golovin and his team have created a two-layer coating made of polydimethylsiloxane (PDMS) brushes, which are linear, single polymer chains grown from a substrate to form a nanoscale surface layer.

Experiments conducted by the team showed that this coating can significantly reduce microfibre shedding of nylon clothing after repeated laundering. The researchers share their findings in a new paper published in Nature Sustainability.

“My lab has been working with this coating on other surfaces, including glass and metals, for a few years now,” says Golovin. “One of the properties we have observed is that it is quite slippery, meaning it has very low friction.”

PDMS is a silicon-based organic polymer that is found in many household products. Its presence in shampoos makes hair shiny and slippery. It is also used as a food additive in oils to prevent liquids from foaming when bottled.

Dr. Sudip Kumar Lahiri, a postdoctoral researcher in Golovin’s lab and lead author of the study, had the idea that if they could reduce the friction that occurs during wash cycles with a PDMS-based fabric finish, then that could stop fibres from rubbing together and breaking off during laundering.

One of the biggest challenges the researchers faced during their study was ensuring the PDMS brushes stayed on the fabric. Lahiri, who is a textile engineer by trade, developed a molecular primer based on his understanding of fabric dyes.

Lahiri reasoned that the type of bonding responsible for keeping dyed apparel colourful after repeated washes could work for the PDMS coating as well.

Neither the primer nor the PDMS brushes work separately to decrease the microplastic-fibre shedding. But together, they created a strong finish that reduced the release of microfibres by more than 90% after nine washes.

“PDMS brushes are environmentally friendly because they are not derived from petroleum like many polymers used today,” says Golovin, who was awarded a Connaught New Researcher award for this work.

“With the addition of Sudip’s primer, our coating is robust enough to remain on the garment and continue to reduce micro-fibre shedding over time.”

Since PDMS is naturally a hydrophobic (water-repellent) material, the researchers are currently working on making the coating hydrophilic, so that coated fabrics will be better able to wick away sweat. The team has also expanded the research to look beyond nylon fabrics, including polyester and synthetic-fabric blends.

“Many textiles are made of multiple types of fibres,” says Golovin. “We are working to formulate the correct polymer architecture so that our coating can durably adhere to all of those fibres simultaneously.”

####

For more information, please click here

Contacts:
Fahad Pinto
University of Toronto Faculty of Applied Science & Engineering

Office: 416-978-4498

Copyright © University of Toronto Faculty of Applied Science & Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Textiles/Clothing

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project