Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items

Abstract:
• Polymer fibers with graphene nanotubes combine the flexibility of synthetic fiber with very high electrical conductivity. The nanotubes can be added into melted polypropylene or polyamide to provide electrical conductivity.
• An ultrafine conductive fiber is used for fabric or mesh that can then be integrated into a polymer system.
• Such electrically conductive heating fibers are required in the medical, agricultural, construction, oil and gas, textile, automotive, and aerospace industries.

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items

Luxembourg | Posted on February 11th, 2022

From the warming of seating to the heating of industrial and living areas, from the heating of cars interior parts to the de-icing of roofs—all these challenges require flexible heating elements that allow temperature control. AMPERETEX has developed an ultrafine polymer fiber with OCSiAl’s TUBALL graphene nanotubes, also known as single wall carbon nanotubes. “A current equivalent to an ordinary incandescent lamp with a power of 75 W is enough to heat polymer material with a mesh made from such a fiber with nanotubes. The solution is safe for people—the voltage of clothing made of fabric with nanotubes is only 5 V,” said Pavel Pogrebnyakov, Founder and CEO of AMPERETEX.



“Graphene nanotubes are one of the highest performing conductors on Earth. At the same time, unlike other carbon additives, they are very flexible. Their shape is similar to human hair, but 50,000 times thinner. Due to their unique properties, the dosage of graphene nanotubes required to modify polymer fibers can be so low that it doesn’t affect filament production or characteristics,” said Dr. Christian Maus, Development and Support Leader for Thermoplastics at OCSiAl Group. The graphene nanotubes are available as concentrates that can be added into melted polypropylene or polyamide, for example.



Heating mesh made of the innovative fibers is integrated into flexible material or complex-shaped composite elements. Laboratory tests showed a fiber durability of 30,000 cycles, which is compatible to a 30-year service life. Electrically conductive heating meshes have successfully passed testing in various projects, among which are an anti-icing roof and a bus stop: an anti-slip coating with integrated AMPERETEX heating elements and embedded automatic heating sensors.



“The market for the application of such fibers is huge. This includes the medical, agricultural, construction, oil and gas, automotive, and aerospace industries. Currently, we have entered production of synthetic heating fabrics at industrial-scale volumes. This year, we plan to release a line of products for heating in previously unavailable areas. We are trying to reduce energy consumption and create solutions for the B2B sector in response to a specific request. The next step is the usage of these elements for heating of hard-to-reach objects and products with complex geometric configurations,” noted Pavel Pogrebnyakov.

####

About OCSiAl Group
Headquartered in Luxembourg, OCSiAl is the world’s largest manufacturer of graphene nanotubes, also known as single wall carbon nanotubes. It employs more than 450 people worldwide in locations including the United States, Europe, China, Russia, India, Japan, and South Korea. Current annual production capacity is 90 tons, which accounts for 97% of the world’s graphene nanotube production capacity. OCSiAl has developed more than 40 graphene nanotube products aimed at enhancing polymer materials, including thermosets, thermoplastics, elastomers, and electrochemical power sources. Read more at tuball.com



About AMPERETEX

AMPERETEX is a Russian company producing heating fabrics based on an electrically conductive fiber with the addition of polymers and nano-additives. The company's plant was built in the Khrabrovo Industrial Park in the Kaliningrad Region. The geographical position of the westernmost region of Russia and the status of a special economic zone resident allows the company's partners to supply raw materials and finished products at the lowest cost both to the CIS market and to the markets of the EU and North America. Read more at https://amperetex.ru/en/

For more information, please click here

Contacts:
Anastasiya Tarasenko
PR & Advertising Manager
OCSiAl Group
+7 952 944 25 53

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project