Home > Press > Yale researchers’ technology turns wasted heat into power
The temperature difference between a waste heat source and the environment drives water across the nanobubble membrane (enlarged) and through a turbine to generate electricity.
Credit: Yale University |
Abstract:
Researchers at Yale have developed a new technology that could make energy from the low-temperature wasted heat produced by industrial sources and power plants, tapping into a widely available — and mostly unused — resource.
It is estimated that recoverable waste heat in the U.S. alone could power tens of millions of homes. Although existing technologies can reuse high-temperature heat or convert it to electricity, it is difficult to efficiently extract energy from low-temperature heat waste due to the small temperature difference between the plant’s heat discharge and the surrounding environment. Additionally, conventional systems are designed to target a specific temperature difference, so they’re less effective when there are fluctuations in the output of waste heat.
Researchers at Yale’s Department of Chemical and Environmental Engineering have developed a new technology that overcomes these challenges. The key is a “nanobubble membrane” that traps tiny air bubbles within its pores when immersed in water. Heating one side of the membrane causes water to evaporate, travel across the air gap, and condense on the opposite side of the membrane. This temperature-driven flow of water across the membrane is then directed to a turbine to generate electricity.
To prove the concept, the team built a small-scale system and demonstrated that the nanobubble membranes could produce pressurized flows of water and generate power even with heat fluctuations and temperature differences as small as 20 degrees Celsius — making it feasible for use with the wasted heat from industrial sources. The findings were published online June 27 in the journal Nature Energy.
The researchers used nanostructured membranes with a surface chemistry that helps trap the air bubbles, keeping bubbles contained within pores even when large pressures are generated. These membranes, approximately as thick as two sheets of paper, were made from highly hydrophobic (water-repelling) polymer nanofibers.
“It was critical to identify robust air-trapping membranes that facilitate pressure generation,” said Menachem Elimelech, corresponding author on the paper and the Roberto C. Goizueta Professor of Chemical and Environmental Engineering at Yale. “Without the right membrane, water would displace the air in the pores, and the process would not be feasible.”
The demonstration of the prototype convinced the researchers of the value of the technology.
“We found that the efficiency of this system can exceed that of comparable technologies,” said Anthony Straub, first author on the study and a doctoral student in chemical and environmental engineering. “The process also only uses water, so it is cost-effective and environmentally friendly.”
The researchers plan to continue work on the technology, developing improved membranes that can better trap air bubbles. They also are investigating how large-scale future systems will perform.
In addition to Elimelech and Straub, the research team included Ngai Yin Yip, a former doctoral student at Yale and current assistant professor at Columbia University; Shihong Lin, a former Yale postdoc and current assistant professor at Vanderbilt University; and Jongho Lee, a postdoc in chemical and environmental engineering at Yale.
####
For more information, please click here
Contacts:
William Weir
203-317-9267
Copyright © Yale University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||