Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing

Two interfering magnon modes create spin waves (red/blue spirals), injecting a spin current (red/blue spheres with arrows) into an integrated platinum stripe (blue). The interference patterns are separately detected by a laser beam (green). The curved arrow at the top illustrates that the resulting polarization is dynamically controlled. © Anna Duvakina/LMGN EPFL

Credit
© Anna Duvakina/LMGN EPFL
Two interfering magnon modes create spin waves (red/blue spirals), injecting a spin current (red/blue spheres with arrows) into an integrated platinum stripe (blue). The interference patterns are separately detected by a laser beam (green). The curved arrow at the top illustrates that the resulting polarization is dynamically controlled. © Anna Duvakina/LMGN EPFL Credit © Anna Duvakina/LMGN EPFL

Abstract:
In 2023, EPFL researchers succeeded in sending and storing data using charge-free magnetic waves called spin waves, rather than traditional electron flows. The team from the Lab of Nanoscale Magnetic Materials and Magnonics, led by Dirk Grundler, in the School of Engineering used radiofrequency signals to excite spin waves enough to reverse the magnetization state of tiny nanomagnets. When switched from 0 to 1, for example, this allows the nanomagnets to store digital information; a process used in computer memory, and more broadly in information and communication technologies.

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing

Lausanne, Switzerland | Posted on April 25th, 2025

This work was a big step toward sustainable computing, because encoding data via spin waves (whose quasiparticles are called magnons) could eliminate the energy loss, or Joule heating, associated with electron-based devices. But at the time, the spin wave signals could not be used to reset the magnetic bits to overwrite existing data.

Now Grundler’s lab, in collaboration with colleagues at Beihang University in China, has published research in Nature Physics that could make such repeated encoding possible. Specifically, they report unprecedented magnetic behavior in hematite: an iron oxide compound that is earth-abundant and much more environmentally friendly than materials currently used in spintronics.

Grundler explains: “This work demonstrates that hematite is not just a sustainable replacement for established materials like yttrium iron garnet. It exhibits entirely new spin physics that can be harvested for signal processing at ultrahigh frequencies, which is essential for the development of ultrafast spintronic devices, and their applications in next-generation information and communication technology.”

Two magnon modes are better than one

The discovery came unexpectedly when EPFL alumnus Haiming Yu, now a professor at the Fert Beijing Institute in the MIIT Key Laboratory of Spintronics at Beihang University, detected some strange electrical signals coming from a nanostructured platinum stripe on hematite. The signals, measured by researcher Lutong Sheng of the same group, were unlike anything observed on conventional magnetic materials, so Yu’s team sent their device to Grundler’s lab for analysis.

While examining the magnon signals in the sample, Grundler spotted a ‘wiggle’ in their spatial distribution. “This sharp observation eventually led to the discovery of an interference pattern, which was the critical turning point of this research,” Yu says. Indeed, using light scattering microscopy, EPFL PhD student Anna Duvakina determined that the strange electrical signals in the hematite sample were related to patterns of interference between two separate spin wave excitations called magnon modes.

Other magnetic materials like yttrium iron garnet only yield one magnon mode, but having two magnon modes is crucial: it means that spin currents generated from magnons could be made to switch back and forth between opposing polarizations on the same device, which could in turn switch the magnetization state of a nanomagnet in either direction. In theory, this could finally allow repeated encoding and storage of digital data. Next, the researchers hope to test this idea by mounting a nanomagnet onto the hematite device.

“Hematite has been known to man for thousands of years but its magnetism has been too weak for standard applications. Now, it turns out that it outperforms a material that was optimized for microwave electronics in the 1950s,” Grundler says. “This is the beauty of science: you can take this old, earth-abundant material and find this very timely application for it, which could allow us to have a more efficient and sustainable approach to spintronics.”

####

For more information, please click here

Contacts:
Celia Luterbacher
Ecole Polytechnique Fédérale de Lausanne

Office: 41-216-938-759

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Magnetism/Magnons

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project