Home > Press > Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher
![]() |
Superparamagnetism in Graphene and Amaranthus |
Abstract:
Ms.T.Theivasanthi, a woman researcher of India has innovated superparamagnetic materials from graphene and a plant Amaranthus dubius. She has already made superparamagnetic materials from some mixed plants materials of Acalypha indica, Cynodon dactylon, Terminalia chebula, Eugenia jambolina and Cassia auriculata named as Santhi Particles. Apart from the above plants, she has innovated superparamagnetic materials from the plants of Cocos nucifera and Curcuma longa. They have been named as Santhi Particles-1 and Santhi Particles-2 respectively. Now, Santhi Particles-3 has been identified from the plant Amaranthus dubius.
It is essential to mention here that room temperature superparamagnetic behaviour has been observed in all the above materials. VSM analysis of the nanomaterials samples have been done at SAIF, IIT Madras (India). The preliminary research result / figure confirm their superparamagnetic behavior. Further research on this issue is undergoing. Also, an attempt has been made to find magnetic behaviour of Butter beans (Phaseolus lunatus) and Jackfruit seed nanopowder (Artocarpus heterophyllus). Samples of both these materials have shown diamagnetic behaviour.
Graphene is an amazing, man-made, super strong, super light material and has better electron mobility / better electricity conductor than other metals. It conducts / accepts electrons and injects electrons into other materials. It is used as filler to boost mechanical, thermal and electrical properties of composite materials. It is also used in Supercapacitors / ultracapcitors or electrochemical double-layer capacitors (EDLCs) which could store as much energy as an electrochemical battery and charge up in a matter of seconds.
Amaranthus has highly nutritious grains and leaves which are utilized as food material. It contains large amounts of protein, essential amino acids (lysine), vitamins, dietary fiber and dietary minerals (iron, magnesium, phosphorus, copper, manganese, calcium, potassium and zinc).
The scientist Ms.Theivasanthi explains, graphene superparamagnetic material has been made from mechanical grinding of graphite which is the fastest way to make large quantities of such material. She also states, superparamagnetism is the magnetic state of a material between highly ordered parallel spins (ferromagnetism) and randomly ordered spins (paramagnetism). It improves the accuracy of spintronic sensors because a small sensed field is sufficient to order the spins in a superparamagnetic material. Such improved and accurate sensors are useful in number of applications including biosensor.
Previous reports say that graphene is biologically inert material. Hence, the superparamagnetic materials prepared from plants materials as well as graphene will be bio-compatible in nature and will be very useful in various fields, industrial applications and biomedical applications particularly in biology / biotechnology fields.
####
About T.Theivasanthi
The researcher (presently, serving as a Senior Lecturer in Physics, PACR Polytechnic College, Rajapalayam, India) who has discovered this breakthrough advancement explicates her aim i.e. dedicating / devoting her research works towards to achieve the higher level goal such as Nobel Prize and gear-up them to find unexpected innovative ideas & products from materials, accordingly. Hence, the whole society can attain benefits from her works. She also expects to do collaborative research works with the interested collaborators / researchers.
For more information, please click here
Contacts:
Ms.T.Theivasanthi,
Senior lecturer in Physics,
PACR Polytechnic College, Rajapalayam – 626108. INDIA.
Mobile: 9344643384.
Copyright © T.Theivasanthi
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |