Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher

Superparamagnetism in Graphene and Amaranthus
Superparamagnetism in Graphene and Amaranthus

Abstract:
Ms.T.Theivasanthi, a woman researcher of India has innovated superparamagnetic materials from graphene and a plant Amaranthus dubius. She has already made superparamagnetic materials from some mixed plants materials of Acalypha indica, Cynodon dactylon, Terminalia chebula, Eugenia jambolina and Cassia auriculata named as Santhi Particles. Apart from the above plants, she has innovated superparamagnetic materials from the plants of Cocos nucifera and Curcuma longa. They have been named as Santhi Particles-1 and Santhi Particles-2 respectively. Now, Santhi Particles-3 has been identified from the plant Amaranthus dubius.

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher

Rajapalayam, India | Posted on September 23rd, 2014

It is essential to mention here that room temperature superparamagnetic behaviour has been observed in all the above materials. VSM analysis of the nanomaterials samples have been done at SAIF, IIT Madras (India). The preliminary research result / figure confirm their superparamagnetic behavior. Further research on this issue is undergoing. Also, an attempt has been made to find magnetic behaviour of Butter beans (Phaseolus lunatus) and Jackfruit seed nanopowder (Artocarpus heterophyllus). Samples of both these materials have shown diamagnetic behaviour.

Graphene is an amazing, man-made, super strong, super light material and has better electron mobility / better electricity conductor than other metals. It conducts / accepts electrons and injects electrons into other materials. It is used as filler to boost mechanical, thermal and electrical properties of composite materials. It is also used in Supercapacitors / ultracapcitors or electrochemical double-layer capacitors (EDLCs) which could store as much energy as an electrochemical battery and charge up in a matter of seconds.

Amaranthus has highly nutritious grains and leaves which are utilized as food material. It contains large amounts of protein, essential amino acids (lysine), vitamins, dietary fiber and dietary minerals (iron, magnesium, phosphorus, copper, manganese, calcium, potassium and zinc).

The scientist Ms.Theivasanthi explains, graphene superparamagnetic material has been made from mechanical grinding of graphite which is the fastest way to make large quantities of such material. She also states, superparamagnetism is the magnetic state of a material between highly ordered parallel spins (ferromagnetism) and randomly ordered spins (paramagnetism). It improves the accuracy of spintronic sensors because a small sensed field is sufficient to order the spins in a superparamagnetic material. Such improved and accurate sensors are useful in number of applications including biosensor.

Previous reports say that graphene is biologically inert material. Hence, the superparamagnetic materials prepared from plants materials as well as graphene will be bio-compatible in nature and will be very useful in various fields, industrial applications and biomedical applications particularly in biology / biotechnology fields.

####

About T.Theivasanthi
The researcher (presently, serving as a Senior Lecturer in Physics, PACR Polytechnic College, Rajapalayam, India) who has discovered this breakthrough advancement explicates her aim i.e. dedicating / devoting her research works towards to achieve the higher level goal such as Nobel Prize and gear-up them to find unexpected innovative ideas & products from materials, accordingly. Hence, the whole society can attain benefits from her works. She also expects to do collaborative research works with the interested collaborators / researchers.

For more information, please click here

Contacts:
Ms.T.Theivasanthi,
Senior lecturer in Physics,
PACR Polytechnic College, Rajapalayam – 626108. INDIA.
Mobile: 9344643384.

Copyright © T.Theivasanthi

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project