Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher

Superparamagnetism in Graphene and Amaranthus
Superparamagnetism in Graphene and Amaranthus

Abstract:
Ms.T.Theivasanthi, a woman researcher of India has innovated superparamagnetic materials from graphene and a plant Amaranthus dubius. She has already made superparamagnetic materials from some mixed plants materials of Acalypha indica, Cynodon dactylon, Terminalia chebula, Eugenia jambolina and Cassia auriculata named as Santhi Particles. Apart from the above plants, she has innovated superparamagnetic materials from the plants of Cocos nucifera and Curcuma longa. They have been named as Santhi Particles-1 and Santhi Particles-2 respectively. Now, Santhi Particles-3 has been identified from the plant Amaranthus dubius.

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher

Rajapalayam, India | Posted on September 23rd, 2014

It is essential to mention here that room temperature superparamagnetic behaviour has been observed in all the above materials. VSM analysis of the nanomaterials samples have been done at SAIF, IIT Madras (India). The preliminary research result / figure confirm their superparamagnetic behavior. Further research on this issue is undergoing. Also, an attempt has been made to find magnetic behaviour of Butter beans (Phaseolus lunatus) and Jackfruit seed nanopowder (Artocarpus heterophyllus). Samples of both these materials have shown diamagnetic behaviour.

Graphene is an amazing, man-made, super strong, super light material and has better electron mobility / better electricity conductor than other metals. It conducts / accepts electrons and injects electrons into other materials. It is used as filler to boost mechanical, thermal and electrical properties of composite materials. It is also used in Supercapacitors / ultracapcitors or electrochemical double-layer capacitors (EDLCs) which could store as much energy as an electrochemical battery and charge up in a matter of seconds.

Amaranthus has highly nutritious grains and leaves which are utilized as food material. It contains large amounts of protein, essential amino acids (lysine), vitamins, dietary fiber and dietary minerals (iron, magnesium, phosphorus, copper, manganese, calcium, potassium and zinc).

The scientist Ms.Theivasanthi explains, graphene superparamagnetic material has been made from mechanical grinding of graphite which is the fastest way to make large quantities of such material. She also states, superparamagnetism is the magnetic state of a material between highly ordered parallel spins (ferromagnetism) and randomly ordered spins (paramagnetism). It improves the accuracy of spintronic sensors because a small sensed field is sufficient to order the spins in a superparamagnetic material. Such improved and accurate sensors are useful in number of applications including biosensor.

Previous reports say that graphene is biologically inert material. Hence, the superparamagnetic materials prepared from plants materials as well as graphene will be bio-compatible in nature and will be very useful in various fields, industrial applications and biomedical applications particularly in biology / biotechnology fields.

####

About T.Theivasanthi
The researcher (presently, serving as a Senior Lecturer in Physics, PACR Polytechnic College, Rajapalayam, India) who has discovered this breakthrough advancement explicates her aim i.e. dedicating / devoting her research works towards to achieve the higher level goal such as Nobel Prize and gear-up them to find unexpected innovative ideas & products from materials, accordingly. Hence, the whole society can attain benefits from her works. She also expects to do collaborative research works with the interested collaborators / researchers.

For more information, please click here

Contacts:
Ms.T.Theivasanthi,
Senior lecturer in Physics,
PACR Polytechnic College, Rajapalayam – 626108. INDIA.
Mobile: 9344643384.

Copyright © T.Theivasanthi

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project