Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain

Abstract:
Our data-driven world demands more—more capacity, more efficiency, more computing power. To meet society’s insatiable need for electronic speed, physicists have been pushing the burgeoning field of spintronics.

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain

Salt Lake City, Utah | Posted on January 17th, 2025

Traditional electronics use the charge of electrons to encode, store and transmit information. Spintronic devices utilize both the charge and spin-orientation of electrons. By assigning a value to electron spin (up=0 and down=1), spintronic devices offer ultra-fast, energy-efficient platforms.

To develop viable spintronics, physicists must understand the quantum properties within materials. One property, known as spin-torque, is crucial for the electrical manipulation of magnetization that’s required for the next generations of storage and processing technologies.

Researchers at the University of Utah and the University of California, Irvine (UCI), have discovered a new type of spin–orbit torque. The study that published in Nature Nanotechnology on Jan. 15, 2025, demonstrates a new way to manipulate spin and magnetization through electrical currents, a phenomenon that they’ve dubbed the anomalous Hall torque.

“This is brand new physics, which on its own is interesting, but there’s also a lot of potential new applications that go along with it,” said Eric Montoya, assistant professor of physics and astronomy at the University of Utah and lead author of the study. “These self-generated spin-torques are uniquely qualified for new types of computing like neuromorphic computing, an emerging system that mimics human brain networks.”

Hall of torques

Electrons have miniscule magnetic fields that, like planet Earth, are dipolar—some spins are oriented north (“up”) or south (“down”) or somewhere in between. Like magnets, opposite poles attract while like poles repel. Spin-orientation torque refers to the speed at which the electron spins around a fixed point.

In some materials, electricity will sort electrons based on their spin orientation. The distribution of spin-orientation, known as symmetry, will influence the material’s properties, such as the directional flow of a ferromagnet’s magnetic field.

Anomalous Hall torque is related to the well-known anomalous Hall effect, discovered by Edwin Hall in 1881. The anomalous Hall effect describes how electrons are scattered asymmetrically when they pass through a magnetic material, leading to a charge current that flows 90 degrees to the flow of an external electric current. It turns out, an analogous process occurs for spin—when an external electrical current is applied to a material, a spin current flows 90 degrees to the flow of electrical current with the spin-orientation along the direction of the magnetization.

“It really comes down to the symmetry. The different Hall effects describe the symmetry of how efficiently we can control the spin-orientation in a material,” Montoya said. “You can have one effect, or all effects in the same material. As material scientists, we can really tune these properties to get devices to do different things.”

A triad of torques for spintronic devices

The anomalous Hall torque is an example of an emerging concept in spintronics, known as self-generated spin–orbit torques, that exhibit unique spin-torque symmetries best equipped to support future spintronic devices. Together with the spin Hall torque and the recently identified planar Hall torque, also discovered by a team including coauthors Montoya and Ilya Krivorotov, physicist at UCI, the anomalous Hall torque completes a triad of Hall-like spin-orbit torques. Because the torque triad should be present in all conductive spintronic materials, the authors have coined them “Universal Hall torques.” Their universality will give researchers a powerful tool for developing spintronics devices.

Traditional spintronics usually consist of a non-magnetic layer sandwiched between two ferromagnetic materials, like in Magnetoresistive Random Access Memory (MRAM). Spin-torque MRAMs store and manipulate data by injecting a spin-polarized current from one magnetic layer into a second magnetic layer, which flips the spin-orientation of the second magnetic layer. The spin-orientation “up” or “down” can be mapped to the 0s and 1s used for binary data storage. Spin-torque MRAMs can store and access data faster and more efficiently than traditional MRAMS that rely on magnetic fields to flip the flow.

The authors demonstrate that in their device, the spin-orientation could be transferred from a ferromagnetic conductor to an adjacent non-magnetic material, eliminating the need for a second ferromagnetic layer. In fact, the authors built the first-ever spintronic prototype that exploits the anomalous Hall torque effect.

“We utilized anomalous Hall torque to create a nanoscale device known as a spin-torque oscillator. This device can mimic the functionality of a neuron, but is significantly smaller and operates at higher speeds,” said Krivorotov. “Our next step is to interconnect these devices into a larger network, enabling us to explore their potential for performing neuromorphic tasks, such as image recognition.”

*******

Xinyao Pei, physicist at UCI, was also a coauthor of the study. The National Science Foundation (ECCS-2213690 and DMREF-2324203) supported the research.

####

For more information, please click here

Contacts:
Media Contact

Lisa Potter
University of Utah

Office: 801-585-3093
Cell: 949-533-7899

Expert Contact

Eric Montoya
University of Utah Department of Physics & Astronomy


Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, titled “Anomalous Hall spin current drives self-generated spin-orbit torque in a ferromagnet,” published in the journal Nature Nanotechnology on Jan. 15, 2024.:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project