Home > Press > Discovery Inspired by nature: textured materials to aid industry and military: Innovation Corps team developed metals and plastic that repel water, capture sunlight and prevent ice build-up
![]()  | 
| Mool Gupta received one of the first NSF Innovation Corps awards.
 Credit: University of Virginia  | 
Abstract:
The lotus leaf has a unique microscopic texture and wax-like coating that enables it to easily repel water. Taking his inspiration from nature, a University of Virginia professor has figured out a way to make metals and plastics that can do virtually the same thing. 
Mool Gupta, Langley Distinguished Professor in the university's department of electrical and computer engineering, and director of the National Science Foundation's (NSF) Industry/University Cooperative Research Center for Lasers and Plasmas, has developed a method using high-powered lasers and nanotechnology to create a similar texture that repels water, captures sunlight and prevents the buildup of ice.
These textured materials can be used over large areas and potentially could have important applications in products where ice poses a danger, for example, in aviation, the automobile industry, the military, in protecting communication towers, blades that generate wind energy, bridges, roofs, ships, satellite dishes, and even snowboards.
In commercial and military aviation, for example, these materials could improve airline safety by making current de-icing procedures, which include scraping and applying chemicals, such as glycol, to the wings, unnecessary.
For residents in the frigid northeast, many of whom rely on satellite systems, "it could mean they won't lose their signal, and they won't have to go outside with a hammer and chisel and break off the ice," Gupta says.
The materials' ability to trap sunlight also could enhance the performance of solar cells.
Gupta and his research team first made a piece of textured metal that serves as a mold to mass-produce many pieces of plastic with the same micro-texture. The replication process is similar to the one used in manufacturing compact discs. The difference, of course, is that the CD master mold contains specific information, like a voice, whereas, "in our case we are not writing any information, we are creating a micro-texture," Gupta says.
"You create one piece of metal that has the texture," Gupta adds. "For multiple pieces of plastic with the texture, you use the one master made of metal to stamp out multiple pieces. Thus, whatever features are in your master are replicated in the special plastic. Once we create that texture, if you put a drop of water on the texture, the water rolls down and doesn't stick to it, just like a lotus leaf. We have created a human-made structure that repels water, just like the lotus leaf."
The process of making the metal with the special texture works like this: the scientists take high-powered lasers, with energy beams 20 million times higher than that of a laser pointer, for example, and focus the beams on a metal surface. The metal absorbs the laser light and heats to a melting temperature of about 1200 degrees Centigrade, or higher, a process that rearranges the surface material to form a microtexture.
"All of this happens in less than 0.1 millionth of a second," Gupta says. "The microtexture is self-organized. By scanning the focused laser beam, we achieve a large area of microtexture. The produced microtexture is used as a stamper to replicate microtexture in polymers. The stamper can be used many, many times, allowing a low cost manufacturing process. The generated microtextured polymer surface shows very high water repellency."
In the fall of 2011, Gupta was among the first group of scientists to receive a $50,000 NSF Innovation Corps (I-Corps) award, which supports a set of activities and programs that prepare scientists and engineers to extend their focus beyond the laboratory into the commercial world.
Such results may be translated through I-Corps into technologies with near-term benefits for the economy and society. It is a public-private partnership program that teaches grantees to identify valuable product opportunities that can emerge from academic research, and offers entrepreneurship training to faculty and student participants.
The other project members are Paul Caffrey, a doctoral candidate under Gupta's supervision, and Martin Skelly of Charleston, S.C., a veteran of banking in the former Soviet Union who serves as business mentor and is involved in new business investments.
The team participated in a three-day entrepreneurship workshop at Stanford University run by entrepreneurs from Silicon Valley. "We are still pursuing the commercial potential," Gupta says. "The idea is to look at what market can use this technology, how big the market is, and how long it will take to get into it."
--  	Marlene Cimons, National Science Foundation 
####
About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $7.0 billion (FY 2012), we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.
For more information, please click here
Copyright © National Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Automotive/Transportation
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Sports
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020
    Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018
Aerospace/Space
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
    The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight:  Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Industrial
    Quantum interference in molecule-surface collisions February 28th, 2025
    Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
    Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Construction
    Temperature-sensing building material changes color to save energy January 27th, 2023
    Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
    A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
    Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||