Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance

Scanning electron microscopy of carbon ink-coated threads. Straight thread on left. Bending the coated threads creates strain (right), which changes their electrical conductivity - a quantity that can used to calculate the degree of deformation (scale bar 200 microns)

CREDIT
Yiwen Jiang, Tufts University
Scanning electron microscopy of carbon ink-coated threads. Straight thread on left. Bending the coated threads creates strain (right), which changes their electrical conductivity - a quantity that can used to calculate the degree of deformation (scale bar 200 microns) CREDIT Yiwen Jiang, Tufts University

Abstract:
Engineers at Tufts University have created and demonstrated flexible thread-based sensors that can measure movement of the neck, providing data on the direction, angle of rotation and degree of displacement of the head. The discovery raises the potential for thin, inconspicuous tatoo-like patches that could, according to the Tufts team, measure athletic performance, monitor worker or driver fatigue, assist with physical therapy, enhance virtual reality games and systems, and improve computer generated imagery in cinematography. The technology, described today in Scientific Reports, adds to a growing number of thread-based sensors developed by Tufts engineers that can be woven into textiles, measuring gases and chemicals in the environment or metabolites in sweat.

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance

Medford, MA | Posted on January 29th, 2021

In their experiments, the researchers placed two threads in an "X" pattern on the back of a subject's neck. Coated with an electrically conducting carbon-based ink, the sensors detect motion when the threads bend, creating strain that changes the way they conduct electricity. When the subject performed a series of head movements, the wires sent signals to a small Bluetooth module, which then transmitted data wirelessly to a computer or smartphone for analysis.

The data analysis involved sophisticated machine learning approaches to interpret the signals and translate them to quantitate head movements in real time, with 93% accuracy. In this way, the sensors and processor track motion without interference from wires, bulky devices, or limiting conditions such as the use of cameras, or confinement to a room or lab space.

While algorithms will need to be specialized for each location on the body, the proof of principle demonstrates that thread sensors could be used to measure movement in other limbs, according to the researchers. The skin patches or even form-fitting clothing containing the threads could be used to track movement in settings where the measurements are most relelvant, such as in the field, the workplace, or a classroom. The fact that a camera is not needed provides for additional privacy.

"This is a promising demonstration of how we could make sensors that monitor our health, performance, and environment in a non-intrusive way," said Yiwen Jiang, an undergraduate student at Tufts University School of Engineering and first author of the study. "More work needs to be done to improve the sensors' scope and precision, which in this case could mean gathering data from a larger array of threads regularly spaced or arranged in a pattern, and developing algorithms that improve the quantification of articulated movement."

Other types of wearable motion sensor designs have included 3-axis gyroscopes, accelerometers and magnetometers to detect movement of the subject in relation to their surroundings. Those sensors are based on inertial measurements - quantifying how the body accelerates, rotates or moves up and down -and tend to be bulkier and more inconvenient. For example, with other systems, in order to measure head movement, it is necessary to place one sensor on the forehead and another on the neck above the vertebrae. The obtrusive placement of equipment can interfere with the subjects' free movement or simply the convenience of not being conscious of being measured.

For situations such as on the athletic field, the novel thread-based sensor paradigm could be a game changer. By placing thin tatoo-like patches on different joints, an athlete could carry motion sensors to detect their physical movement and form, while thread-based sweat sensors, described in earlier work by the Tufts team, could also potentially track their electrolytes, lactate and other biological markers of performance in sweat.

On the road, a thread sensor patch could alert to truck driver fatigue or other situations where tracking operator alertness is critical, monitoring the head movements of someone about to nod off.

"If we can take this technology further, there could be a wide range of applications in healthcare as well," said Jiang. "For example, those researching Parkinson's disease and other neuromuscular diseases could also track movements of subjects in their normal settings and daily lives to gather data on their condition and the effectiveness of treatments."

"The objective in creating thread-based sensors is to make them 'disappear' as far as the person wearing them is concerned," said Sameer Sonkusale, professor of electrical and computer engineering at Tufts' School of Engineering, director of the Tufts Nanolab, and corresponding author of the study. "Creating a coated thread capable of measuring movement is a remarkable achievement, made even more notable by the fact that Yiwen developed this invention as an undergraduate. We look forward to refining the technology and exploring its many possibilities."

####

For more information, please click here

Contacts:
Mike Silver

617-627-0545

@TuftsPR

Copyright © Tufts University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Wearable electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Sports

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project