Home > Press > Surrey reveals its implantable biosensor that operates without batteries
![]() |
| GETTY IMAGES |
Abstract:
Researchers from the University of Surrey have revealed their new biodegradable motion sensor - paving the way for implanted nanotechnology that could help future sports professionals better monitor their movements to aid rapid improvements, or help caregivers remotely monitor people living with dementia.
In a paper published by Nano Energy, a team from Surrey's Advanced Technology Institute (ATI), in partnership with Kyung Hee University in South Korea, detail how they developed a nano-biomedical motion sensor which can be paired with AI systems to recognise movements of distinct body parts.
The ATI's technology builds on its previous work around triboelectric nanogenerators (TENG), where researchers used the technology to harness human movements and generate small amounts of electrical energy. Combining the two means self-powered sensors are possible without the need for chemical or wired power sources.
In their new research, the team from the ATI developed a flexible, biodegradable and long-lasting TENG from silk cocoon waste. They used a new alcohol treatment technique, which leads to greater durability for the device, even under harsh or humid environments.
Dr. Bhaskar Dudem, project lead and Research Fellow at the ATI, said: "We are excited to show the world the immense potential of our durable, silk film based nanogenerator. It's ability to work in severe environments while being able to generate electricity and monitor human movements positions our TENG in a class of its own when it comes to the technology."
Professor Ravi Silva, Director of the ATI, said: "We are proud of Dr Dudem's work which is helping the ATI lead the way in developing wearable, flexible, and biocompatible TENGs that efficiently harvest environmental energies. If we are to live in a future where autonomous sensing and detecting of pathogens is important, the ability to create both self-powered and wireless biosensors linked to AI is a significant boost."
###
Note to editors
The project is jointly funded by the Engineering and Physical Sciences Research Council (EPSRC), UK, and the National Research Foundation of Korea (NRF).
####
For more information, please click here
Contacts:
Dalitso Njolinjo
@UniOfSurrey
Copyright © University of Surrey
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sports
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018
Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||