Home > Press > Getting wrapped up in solar textiles
A 3-D rendering of "Soft House", which uses household curtains to collect solar energy and provide lighting. |
Abstract:
MIT lecturer focuses on flexible photovoltaic materials
Sheila Kennedy, an expert in the integration of solar cell technology in architecture who is now at MIT, creates designs for flexible photovoltaic materials that may change the way buildings receive and distribute energy.
These new materials, known as solar textiles, work like the now-familiar photovoltaic cells in solar panels. Made of semiconductor materials, they absorb sunlight and convert it into electricity.
Kennedy uses 3-D modeling software to design with solar textiles, generating membrane-like surfaces that can become energy-efficient cladding for roofs or walls. Solar textiles may also be draped like curtains.
"Surfaces that define space can also be producers of energy," says Kennedy, a visiting lecturer in architecture. "The boundaries between traditional walls and utilities are shifting."
Principal architect in the Boston firm, Kennedy & Violich Architecture, Ltd., and design director of its materials research group, KVA Matx, Kennedy came to MIT this year. She was inspired, she says, by President Susan Hockfield's plan to make MIT the "energy university" and by MIT's interdisciplinary energy curriculum that integrates research and practice.
This spring, Kennedy taught a new MIT architecture course, Soft Space: Sustainable Strategies for Textile Construction. She challenged the students to design architectural proposals for a new fast train station and public market in Porto, Portugal.
For Mary Hale, graduate student in architecture, Kennedy's Soft Space course was an inspiration to pursue photovoltaic technology in her master's thesis.
"I have always been interested in photovoltaics, but before this studio, I am not sure that I would have felt empowered to integrate them into a personal, self-propelled, project," she says.
Kennedy, for her part, will pursue her research in pushing the envelope of energy-efficiency and architecture. A recent project, "Soft House," exhibited at the Vitra Design Museum in Essen, Germany, illustrates what Kennedy means when she says the boundaries between walls and utilities are changing.
For Soft House, Kennedy transformed household curtains into mobile, flexible energy-harvesting surfaces with integrated solid-state lighting. Soft House curtains move to follow the sun and can generate up to 16,000 watt-hours of electricity--more than half the daily power needs of an average American household.
Although full-scale Soft House prototypes were successfully developed, the project points to a challenge energy innovators and other inventors face, Kennedy says. "Emerging technologies tend to under-perform compared with dominant mainstream technologies."
For example, organic photovoltaics (OPV), an emergent solar nano-technology used by the Soft House design team, are currently less efficient than glass-based solar technologies, Kennedy says.
But that lower efficiency needn't be an insurmountable roadblock to the marketplace, Kennedy says, because Soft House provides an actual application of the unique material advantages of solar nano-technologies without having to compete with the centralized grid.
Which brings her back to the hands-on, prototype-building approach Kennedy hopes to draw from in her teaching and work at MIT.
"Working prototypes are a very important demonstration tool for showing people that there are whole new ways to think about energy," she says.
####
About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.
For more information, please click here
Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403
Copyright © MIT
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Construction
Temperature-sensing building material changes color to save energy January 27th, 2023
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||