Home > Press > New research shows how nanowires can be formed
New research shows nanowires made from gallium arsenide and composed of different crystal structures are formed. Photo: Lund University |
Abstract:
In an article published in Nature today, researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow. Researchers learning to control the properties of materials this way can lead the way to more efficient electronic devices.
Nanowires are believed to be important elements in several different areas, such as in future generations of transistors, energy efficient light emitting diodes (LEDs) and solar cells.
The fact that it is possible to affect how nanowires are formed and grow has been known for a long time. What researchers have now been able to show is what needs to be done to give the nanowires a particular structure.
The gound-breaking discovery includes showing how nanowires grow, and affect the formation of different atomic layers, by using a powerful microscope and theoretical analysis.
"We now have on tape the events that take place, and what is required to be able to control the nanowire growth", says Daniel Jacobsson, former doctoral student at the Lund University Faculty of Engineering, and currently a research engineer at the Lund University Centre for Chemistry and Chemical Engineering.
The team wanted to understand how nanowires grow, and chose to film them though an electron microscope. The article in Nature is about these films, which show nanowires made from gallium arsenide and composed of different crystal structures.
"The nanowires grow through a self-assembly process which is spontaneous and hard to control. But if we can understand how the nanowires grow, we can control the structures that are formed in a more precise way, and thereby create new types of structures for new fields of application", says Daniel Jacobsson.
At the Centre for Chemistry and Chemical Engineering in Lund, a world-leading "super microscope" is under construction, which will be able to show, in high resolution, how atoms are joined together when nanostructures are formed.
"In our Nature article, we show how dynamic the growth of nanowires really is. Once the new microscope is in place, we hope to be able to provide even more details and expand the scope of materials studied.
Both the current results, and hopefully those to come, are important for an even more exact formation of nanowires for various applications", says Professor Kimberly Dick Thelander.
Facts/Study about nanowires
Nanotechnology could be seen as engineering of functional systems at the atomic scale, which illustrates the growth of nanowires, where different atomic layers are stacked on top of each other. In the study Interface Dynamics and Crystal Phase Switching in GaAs Nanowires, the researchers were able to monitor in real time where each new atomic layer is placed in a growing nanowire, and explain why they place themselves where they do. The study shows that it is possible to control the position of each new atomic layer, and was conducted in collaboration with researchers at the IBM T. J. Watson Research Center, USA, and Cambridge University, UK.
Facts / Nanowires
A nanowire is an extremely thin wire with a diameter equal to one thousandth of a human hair. They are made out of many different materials, for example metals such as silver and nickel, semiconductor materials such as silicon and gallium arsenide, and insulating material such as silicon oxide.
Nanowires are useful because they enable the formation of complex structures with many chemical compounds, and sometimes different atomic arrangements. Nanowires are usually made out of single crystals, and the specific atomic arrangement is what determines the structure of the crystal.
Every new type of complicated structure - whether it be a combination of different materials or a new way of joining atoms together - involve new properties and thereby different applications in areas such as electronics and lighting.
####
For more information, please click here
Contacts:
Cecilia Schubert
46-073-062-3858
Daniel Jacobsson
Research engineer
Centre for Analysis and Synthesis
Phone: +46 736167304, +46 46 222 82 29
Sebastian Lehmann
Researcher
Solid State Physics
Phone: +46 46 2224369
Kimberly Dick Thelander
Professor
Solid State Physics/ Centre for Analysis and Synthesis
Phone: +46 706 111735
Copyright © Lund University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||