Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > MIT develops nontoxic way of generating portable power: Battery substitutes produce current by burning fuel-coated carbon nanotubes like a fuse

In this time-lapse series of photos, progressing from top to bottom, a coating of sucrose (ordinary sugar) over a wire made of carbon nanotubes is lit at the left end, and burns from one end to the other. As it heats the wire, it drives a wave of electrons along with it, thus converting the heat into electricity.

Courtesy of the researchers
In this time-lapse series of photos, progressing from top to bottom, a coating of sucrose (ordinary sugar) over a wire made of carbon nanotubes is lit at the left end, and burns from one end to the other. As it heats the wire, it drives a wave of electrons along with it, thus converting the heat into electricity.

Courtesy of the researchers

Abstract:
The batteries that power the ubiquitous devices of modern life, from smartphones and computers to electric cars, are mostly made of toxic materials such as lithium that can be difficult to dispose of and have limited global supplies. Now, researchers at MIT have come up with an alternative system for generating electricity, which harnesses heat and uses no metals or toxic materials.

MIT develops nontoxic way of generating portable power: Battery substitutes produce current by burning fuel-coated carbon nanotubes like a fuse

Cambridge, MA | Posted on March 15th, 2016

The new approach is based on a discovery announced in 2010 by Michael Strano, the Carbon P. Dubbs Professor in Chemical Engineering at MIT, and his co-workers: A wire made from tiny cylinders of carbon known as carbon nanotubes can produce an electrical current when it is progressively heated from one end to the other, for example by coating it with a combustible material and then lighting one end to let it burn like a fuse.

That discovery represented a previously unknown phenomenon, but experiments at the time produced only a minuscule amount of current in a simple laboratory setup. Now, Strano and his team have increased the efficiency of the process more than a thousandfold and have produced devices that can put out power that is, pound for pound, in the same ballpark as what can be produced by today's best batteries. The researchers caution, however, that it could take several years to develop the concept into a commercializable product.

The new results were published in the journal Energy & Environmental Science, in a paper by Strano, doctoral students Sayalee Mahajan PhD '15 and Albert Liu, and five others.

Catching the wave

Strano says "it's actually remarkable that this [phenomenon] hasn't been studied before." Much of his team's work on the project has focused on not just improving the efficiency of the process but also "developing the theory of how these things work." And the latest experiments, he says, show good agreement between theory and experimental results, providing strong confirmation of the underlying mechanism.

Basically, the effect arises as a pulse of heat pushes electrons through the bundle of carbon nanotubes, carrying the electrons with it like a bunch of surfers riding a wave.

One key finding that helped to verify the theory is that sometimes the wave of heat produces a single voltage, but sometimes it produces two different voltage regions at the same time. "Our mathematical model can describe why that occurs," Strano says, whereas alternative theories cannot account for this. According to the team's theory, the thermopower wave "divides into two different components," which sometimes reinforce one another and sometimes counter each other.

The improvements in efficiency, he says, "brings [the technology] from a laboratory curiosity to being within striking distance of other portable energy technologies," such as lithium-ion batteries or fuel cells. In their latest version, the device is more than 1 percent efficient in converting heat energy to electrical energy, the team reports -- which is "orders of magnitude more efficient than what's been reported before." In fact, the energy efficiency is about 10,000 times greater than that reported in the original discovery paper.

"It took lithium-ion technology 25 years to get where they are" in terms of efficiency, Strano points out, whereas this technology has had only about a fifth of that development time. And lithium is extremely flammable if the material ever gets exposed to the open air -- unlike the fuel used in the new device, which is much safer and also a renewable resource.

A spoonful of sugar

While the initial experiments had used potentially explosive materials to generate the pulse of heat that drives the reaction, the new work uses a much more benign fuel: sucrose, otherwise known as ordinary table sugar. But the team believes that other combustion materials have the potential to generate even higher efficiencies. Unlike other technologies that are specific to a particular chemical formulation, the carbon nanotube-based power system works just on heat, so as better heat sources are developed they could simply be swapped into a system to improve its performance, Strano says.

Already, the device is powerful enough to show that it can power simple electronic devices such as an LED light. And unlike batteries that can gradually lose power if they are stored for long periods, the new system should have a virtually indefinite shelf life, Liu says. That could make it suitable for uses such as a deep-space probe that remains dormant for many years as it travels to a distant planet and then needs a quick burst of power to send back data when it reaches its destination.

In addition, the new system is very scalable for use in the increasingly tiny wearable devices that are emerging. Batteries and fuel cells have limitations that make it difficult to shrink them to tiny sizes, Mahajan says, whereas this system "can scale down to very small limits. The scale of this is unique."

###

The team also included Anton Cottrill, Yuichiro Kunai, David Bender, Javier Castillo Jr., and Stephen Gibbs. The work was supported by the Air Force Office of Scientific Research and the Office of Naval Research.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Sustainable power sources based on high efficiency thermopower wave devices.”:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project