Home > Press > Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons
![]()  | 
| Left to right: a scanning electrode microscopy shot of the series of double-dot single-electron transistor (bright spots correspond to the cores of the gold nanoparticles); a schematic of the device; an experimental stability diagram.
 CREDIT: Majima/Tokyo Institute of Technology  | 
Abstract:
A single-electron transistor (SET) is an electrical device that takes advantage of a strange quantum phenomenon called tunneling to transport single electrons across a thin insulator. The device serves as an on/off switch on the tiniest scale and could play an important role in quantum computing.
A group of researchers in Japan is exploring the behavior of a certain type of SET made from two quantum dots, which are bits of material so small they start to exhibit quantum properties. The group has produced a detailed analysis of the electrical characteristics of the so-called double-quantum-dot SETs, which could help researchers design better devices to manipulate single electrons. They report their findings in the Journal of Applied Physics, from AIP Publishing.
The team began their work by fabricating the electrodes of the SET, which were separated by a nanometer scale gap, with an electroless gold-plating technique. They then synthesized size-controlled gold nanoparticles within the gap.
To do this, they "chemically assembled a series of double-dot SETs by anchoring two gold nanoparticles between the nanogap electrodes with alkanedithiol molecules to form a self-assembled monolayer," explained Yutaka Majima, a professor in the Materials and Structures Laboratory at the Tokyo Institute of Technology.
The team tested the electrical properties of the device and found that regions within the quantum dots exhibited zero conductance and a stable electron number -- both highly desirable traits for quantum computing. Such regions are called Coulomb diamonds and their properties are "extraordinarily stable and coveted," Majima said.
The same researchers had earlier found Coulomb diamonds in single-quantum-dot SETs.
The group -- which also includes members from Kyoto University, the University of Tsukuba, and Japan Science and Technology Agency (JST) -- was then able to determine, through both theoretical and experimental analysis, many additional important electrical parameters of the SETs. The team then linked these parameters to the geometry of the device.
"Thanks to [the Coloumb diamond] stability, we could determine the equivalent circuit parameters with accuracy by analyzing the device's electrical characteristics," said Majima. "Precise estimation of the circuit parameters results in the determination of double-dot structures, which can be critical for reproducible single-electron devices."
Majima and colleagues found that the evaluated parameters "corresponded well to the geometrical structures of the device," which they were able to observe via scanning electron microscopy.
In terms of applications, it's quite possible that the team's work with double-dot SETs will find future use within quantum electronics to manipulate a single electron and its spin.
The researchers' next goal is "to manipulate and control a single electron and its spin on double-dot single-electron devices by using asymmetric side-gate electrodes to demonstrate spin qubits," said Majima.
Qubits, aka quantum bits, can encode both a "zero" and a "one" at the same time within their relative spin, so they are being pursued for storing and manipulating information in quantum computers.
The authors of this study are affiliated with Tokyo Institute of Technology, Kyoto University, University of Tsukuba, Japan Science and Technology Agency (JST).
####
About American Institute of Physics
The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. jap.aip.org
For more information, please click here
Contacts:
Jason Socrates Bardi
240-535-4954
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Spintronics
    Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Quantum Computing
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Quantum Dots/Rods
    A new kind of magnetism November 17th, 2023
    IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
    Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
    NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||