Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons

Left to right: a scanning electrode microscopy shot of the series of double-dot single-electron transistor (bright spots correspond to the cores of the gold nanoparticles); a schematic of the device; an experimental stability diagram.
CREDIT: Majima/Tokyo Institute of Technology
Left to right: a scanning electrode microscopy shot of the series of double-dot single-electron transistor (bright spots correspond to the cores of the gold nanoparticles); a schematic of the device; an experimental stability diagram.

CREDIT: Majima/Tokyo Institute of Technology

Abstract:
A single-electron transistor (SET) is an electrical device that takes advantage of a strange quantum phenomenon called tunneling to transport single electrons across a thin insulator. The device serves as an on/off switch on the tiniest scale and could play an important role in quantum computing.

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons

Washington, DC | Posted on October 7th, 2015

A group of researchers in Japan is exploring the behavior of a certain type of SET made from two quantum dots, which are bits of material so small they start to exhibit quantum properties. The group has produced a detailed analysis of the electrical characteristics of the so-called double-quantum-dot SETs, which could help researchers design better devices to manipulate single electrons. They report their findings in the Journal of Applied Physics, from AIP Publishing.

The team began their work by fabricating the electrodes of the SET, which were separated by a nanometer scale gap, with an electroless gold-plating technique. They then synthesized size-controlled gold nanoparticles within the gap.

To do this, they "chemically assembled a series of double-dot SETs by anchoring two gold nanoparticles between the nanogap electrodes with alkanedithiol molecules to form a self-assembled monolayer," explained Yutaka Majima, a professor in the Materials and Structures Laboratory at the Tokyo Institute of Technology.

The team tested the electrical properties of the device and found that regions within the quantum dots exhibited zero conductance and a stable electron number -- both highly desirable traits for quantum computing. Such regions are called Coulomb diamonds and their properties are "extraordinarily stable and coveted," Majima said.

The same researchers had earlier found Coulomb diamonds in single-quantum-dot SETs.

The group -- which also includes members from Kyoto University, the University of Tsukuba, and Japan Science and Technology Agency (JST) -- was then able to determine, through both theoretical and experimental analysis, many additional important electrical parameters of the SETs. The team then linked these parameters to the geometry of the device.

"Thanks to [the Coloumb diamond] stability, we could determine the equivalent circuit parameters with accuracy by analyzing the device's electrical characteristics," said Majima. "Precise estimation of the circuit parameters results in the determination of double-dot structures, which can be critical for reproducible single-electron devices."

Majima and colleagues found that the evaluated parameters "corresponded well to the geometrical structures of the device," which they were able to observe via scanning electron microscopy.

In terms of applications, it's quite possible that the team's work with double-dot SETs will find future use within quantum electronics to manipulate a single electron and its spin.

The researchers' next goal is "to manipulate and control a single electron and its spin on double-dot single-electron devices by using asymmetric side-gate electrodes to demonstrate spin qubits," said Majima.

Qubits, aka quantum bits, can encode both a "zero" and a "one" at the same time within their relative spin, so they are being pursued for storing and manipulating information in quantum computers.

The authors of this study are affiliated with Tokyo Institute of Technology, Kyoto University, University of Tsukuba, Japan Science and Technology Agency (JST).

####

About American Institute of Physics
The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. jap.aip.org

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge," is authored by Shinya Kano, Kosuke Maeda, Daisuke Tanaka, Masanori Sakamoto, Toshiharu Teranishi and Yuraka Majima. It will appear in the Journal of Applied Physics on October 6, 2015 (DOI: 10.1063/1.4931611). After that date, it can be accessed at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project