Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First superconducting graphene created by UBC researchers

University of British Columbia physicists have been able to create the first superconducting graphene sample by coating it with lithium atoms.
University of British Columbia physicists have been able to create the first superconducting graphene sample by coating it with lithium atoms.

Abstract:
Graphene, the ultra-thin, ultra-strong material made from a single layer of carbon atoms, just got a little more extreme. University of British Columbia (UBC) physicists have been able to create the first ever superconducting graphene sample by coating it with lithium atoms.

First superconducting graphene created by UBC researchers

Vancouver, Canada | Posted on September 9th, 2015

Although superconductivity has already been observed in intercalated bulk graphite—three-dimensional crystals layered with alkali metal atoms, based on the graphite used in pencils—inducing superconductivity in single-layer graphene has until now eluded scientists.

“Decorating monolayer graphene with a layer of lithium atoms enhances the graphene’s electron–phonon coupling to the point where superconductivity can be induced,” says Andrea Damascelli, director of UBC’s Quantum Matter Institute and lead scientist of the Proceedings of the National Academy of Sciences study outlining the discovery.

Graphene, roughly 200 times stronger than steel by weight, is a single layer of carbon atoms arranged in a honeycomb pattern. Along with studying its extreme physical properties, scientists eventually hope to make very fast transistors, semiconductors, sensors and transparent electrodes using graphene.

“This is an amazing material,’” says Bart Ludbrook, first author on the PNAS paper and a former PhD researcher in Damascelli’s group at UBC. “Decorating monolayer graphene with a layer of lithium atoms enhances the graphene’s electron–phonon coupling to the point where superconductivity can be stabilized.”

Given the massive scientific and technological interest, the ability to induce superconductivity in single-layer graphene promises to have significant cross-disciplinary impacts. According to financial reports, the global market for graphene reached $9 million in 2014 with most sales in the semiconductor, electronics, battery, energy, and composites industries.

The researchers, which include colleagues at the Max Planck Institute for Solid State Research through the joint Max-Planck-UBC Centre for Quantum Materials, prepared the Li-decorated graphene in ultra-high vacuum conditions and at ultra-low temperatures (5 K or -449 F or -267 C), to achieve this breakthrough.

####

About Faculty of Science, University of British Columbia
At UBC Science, outstanding scientists and students strive to unravel the principles that underlie our universe—from the subatomic to the macroscopic, from pure mathematics to biotechnology, from ecosystems to galactic systems. Through the breadth and depth of our academic endeavours and the calibre of the people who make up our community, we take pride in discovering new scientific knowledge and preparing Canada’s—and the world’s—next generation of scientists.

UBC Science is organized into nine academic departments: Botany, Chemistry, Computer Science, Earth, Ocean and Atmospheric Sciences, Mathematics, Microbiology and Immunology, Physics and Astronomy, Statistics and Zoology. Together with colleagues in other faculties, UBC Science delivers BSc programs in eighteen discrete disciplines, four innovative interdisciplinary programs, and offers a number of ways to combine study across disciplines.

About UBC’s Quantum Matter Institute

UBC’s Quantum Matter Institute (QMI) is internationally recognized for its research and discoveries in quantum structures, quantum materials, and applications towards quantum devices. A recent $66.5-million investment from the Canada First Research Excellence Fund will broaden the scope of QMI’s research and support the discovery of practical applications for computing, electronics, medicine and sustainable energy technologies.

For more information, please click here

Contacts:
Chris Balma

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project