Home > Press > Leading German scientist unveils world first at University of Nottingham Nanocentre
![]() |
LiPPS machine at The University of Nottingham. |
Abstract:
A unique X-ray machine - the world's first high performance tool dedicated to the study of liquid surfaces - will take pride of place at the opening of a new research facility at The University of Nottingham's Nanoscience and Nanotechnology Centre (NNNC) next week.
Eminent German physicist and chemist Professor Dr Hans-Peter Steinrück from Friedrich-Alexander-Universität will be guest of honour at the celebration on Tuesday 17 December 2013 when the Centre's new X-ray Photoelectron Spectroscopy Suite is unveiled.
At centre stage is the University's new Liquid Phase Photoelectron Spectroscopy (LiPPS) machine which is the first ever tool to allow researchers to take atomistic measurements of the surface of liquids. The research capabilities of LiPPS are ground-breaking and wide-ranging in a variety of high-value industrial sectors like semi-conductors, pharmaceuticals, aerospace and automotives.
The suite has been set up as part of a £7.2 million grant from the Engineering and Physical Sciences Research Council. Pro-Vice-Chancellor for Research at The University of Nottingham Professor Saul Tendler said: "We are very proud to welcome Professor Dr Hans-Peter Steinrück to the official opening of this fantastic new facility. He is a world leader in the investigation of the physics and chemistry of surfaces as well as the development of bespoke scientific equipment in this area."
Director of the NNNC, Professor Andrei Khlobystov, added: "The X-ray Photoelectron Spectroscopy Suite is the gateway to an entirely new area of research because up to now XPS equipment has only allowed analysis of solid substances. LiPPS will secure The University of Nottingham's leading position in nanotechnology and by providing access to industry and academia, we will maximise the impact of this new instrument on a national and international scale."
The university's Professor Peter Licence and his team are credited with the discovery of ionic liquid-based surface science. He said: "The potential applications of this new area of research are vast. Understanding solute composition and interfacial structure is vital in a wide range of processes including catalysts and electrode-related systems. We believe our research could lead to the design of more efficient energy storage and energy conversion devices. Also solution-based processes including electroplating and polishing are key to advancing engineering throughout the automotive and aeronautics industries which are main areas of growth for UK manufacturing."
Co-researcher Ms Emily Smith has been a key figure in the development of XPS instrumentation and is one of the few people in the world with the expertise to design and interpret experimental data in the context of liquid samples. She commented:
"As far as the experimental work goes we will start at the beginning with some calibrations and groundwork which other researchers can use worldwide, after that our remit is very broad but there is a strong sense that developments that can help secure energy production and storage as well as reducing energy usage in industrial processes (particularly through green chemistry innovations) and reducing and recovering pollutants from these will be our driving factors. For example we want to examine the absorption and release of gases and heavy metals from liquid surfaces which have potential to scrub power station flue gases.
####
For more information, please click here
Contacts:
Emma Rayner
The University of Nottingham
0044(0)1159515793
Emily Smith
Experimental Officer
Nottingham Nanotechnology and Nanoscience Centre
+44 (0)115 951 3458
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
More details about the Nottingham Ionic Liquids Group can be found at:
For more information about The University of Nottingham’s work in nanotechnology, visit:
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Aerospace/Space
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |