Home > Press > How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical
Credit: Northern Arizona University |
Abstract:
Ever wondered why your credit score is what it is? Have you stored private information in the cloud that you want to remain that way? Thought about investing in cryptocurrency? Worried about cyber warfare?
If you answered yes to any of these questions, quantum computing plays a role in your life—or at least, it will when its usage becomes practical enough to run the systems that run our daily lives.
That’s where Ryan Behunin’s work comes in.
Behunin, an assistant professor of applied physics and materials science and a researcher in NAU’s Center for Materials Interfaces in Research & Applications (¡MIRA!), explores fundamental questions about the interaction of light, sound and matter. His latest research project, “Controlling noise in quantum devices with light and sound,” was funded with an almost $500,000 NSF CAREER grant, which supports early-career faculty in their groundbreaking research.
This work targets challenges to realizing practical quantum computers by helping the building blocks of quantum computers, termed “qubits,” perform better. That is critical because quantum computers have the potential to solve certain problems that are not tractable using traditional computing technology. The challenge is that, currently, the technology is too vulnerable to disturbances in the environment that corrupt the information stored in quantum computers—too full of noise, as it were—to reach its full potential.
Behunin’s goal is to quiet that noise.
“Theoretically, quantum physics can enable powerful new computers that achieve massive exponential speedups over traditional forms of computing, permitting calculations that currently are intractable” Behunin said. “Practically, however, the very quantum features that enable these remarkable properties are rapidly erased by process termed decoherence, which is not unlike the way a plucked guitar string eventually relaxes.”
As a result, decoherence limits the lifetime of quantum states, posing challenges for practical quantum technologies. This project will show how decoherence can be controlled by manipulating sound waves.
“Noise” in quantum mechanics operates much like static on the radio, making it difficult to “hear” the signal. The most problematic source of noise for many quantum devices is from two-level tunneling states, or TLSs. They’re not well understood, but they are everywhere, and physicists have yet to find an effective way to quiet TLSs. This research will leverage the strong interaction between TLSs and sound waves to develop new techniques that control and reduce this source of noise.
The answers Behunin is looking for have implications for cybersecurity, advanced manufacturing and areas like drug development; faster, more accessible quantum computing could mean faster and more affordable creation of drugs or other organic materials.
"We can take a big step toward practical quantum technology if we can show how noise can be controlled and reduced in quantum devices,” Behunin said.
This project also will focus on giving research opportunities to students from populations that are historically underrepresented in the field of physics, including women and minority groups. In addition to its groundbreaking research, ¡MIRA!’s mission is to increase diversity in these fields. Recruiting students into labs like Behunin’s is a big part of that mission, as is outreach to K-12 students to get them excited about STEM research long before they enter college. That’s why part of this project includes Behunin teaching a free mini course on quantum physics at Tynkertopia, a nonprofit STEAM center located in Flagstaff’s Sunnyside neighborhood.
“Scientifically, we’re trying to answer deep materials science questions—namely, what are TLSs and how can we get rid of them?” Behunin said. “With regard to diversity, this project aims to engage communities that are underrepresented in the sciences. The goal is to increase access and exposure to quantum science in our underserved communities.”
####
For more information, please click here
Contacts:
Heidi Toth
Northern Arizona University
Office: 928-523-8737
Heidi Toth
Northern Arizona University
Copyright © Northern Arizona University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||