Home > Press > Scientists untangle nanotubes to release their potential in the electronics industry
![]() |
Researchers have demonstrated how to produce electronic inks for the development of new applications using the 'wonder material', carbon nanotubes. Carbon nanotubes are lightweight, strong and conduct electricity, which make them ideal components in new electronics devices, such as tablet computers and touchscreen phones, but cannot be used without being separated out from their natural tangled state. Credit: Imperial College London |
Abstract:
Researchers have demonstrated how to produce electronic inks for the development of new applications using the 'wonder material', carbon nanotubes.
In the video above, Dr. Stephen Hodge and Professor Milo Shaffer, both from Imperial's Department of Chemistry, talk about the challenges of unraveling and applying carbon nanotubes in the laboratory and how the method is being scaled up to meet the requirements of industrial-scale manufacturing.
Carbon nanotubes are lightweight, strong and conduct electricity, which make them ideal components in new electronics devices, such as tablet computers and touchscreen phones, but cannot be used without being separated out from their natural tangled state.
In the video above, Dr Stephen Hodge and Professor Milo Shaffer, both from Imperial's Department of Chemistry, talk about the challenges of unravelling and applying carbon nanotubes in the laboratory and how the method is being scaled up to meet the requirements of industrial-scale manufacturing.
Carbon nanotubes are hollow, spaghetti-like strands made from the same material as graphene; only one nanometre thick but with theoretically unlimited length. This 'wonder material' shares many of graphene's properties, and has attracted much public and private investment into making it into useful technology.
By giving the nanotubes an electrical charge, they were able to pull apart individual strands. Using this method, nanotubes can be sorted or refined, then deposited in a uniform layer onto the surface of any object.
Working with an industrial partner, Linde Electronics, they have produced an electrically-conductive carbon nanotube ink, which coats carbon nanotubes onto ultra-thin sheets of transparent film that are used to manufacture flat-screen televisions and computer screens.
This was developed by Professor Shaffer and colleagues from the London Centre for Nanotechnology, which includes fellow Imperial scientist Dr Siân Fogden, as well as Dr Chris Howard and Professor Neal Skipper from UCL.
The research is written up in the journals Nature Communications and ACS Nano.
####
For more information, please click here
Contacts:
Simon Levey
44-020-759-46702
Copyright © Imperial College London
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Nature Communications article:
Related News Press |
Display technology/LEDs/SS Lighting/OLEDs
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |