Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New X-ray imaging technique to study the transient phases of quantum materials

A crystalline lattice melting, artistically represented here as a snowflake, is superimposed upon it's coherent X-ray scattering pattern

CREDIT
ICFO/ Patricia Bondia
A crystalline lattice melting, artistically represented here as a snowflake, is superimposed upon it's coherent X-ray scattering pattern CREDIT ICFO/ Patricia Bondia

Abstract:
The use of light to produce transient phases in quantum materials is fast becoming a novel way to engineer new properties in them, such as the generation of superconductivity or nanoscale topological defects. However, visualizing the growth of a new phase in a solid is not easy, due in-part to the wide range of spatial and time scales involved in the process.

New X-ray imaging technique to study the transient phases of quantum materials

Castelldefels (Barcelona), Spain | Posted on December 29th, 2022

Although in the last two decades scientists have explained light-induced phase transitions by invoking nanoscale dynamics, real space images have not yet been produced and, thus, no one has seen them.

In the new study published in Nature Physics, ICFO researchers Allan S. Johnson and Daniel Pérez-Salinas, led by former ICFO Prof. Simon Wall, in collaboration with colleagues from Aarhus University, Sogang University, Vanderbilt University, the Max Born Institute, the Diamond Light Source, ALBA Synchrotron, Utrecht University, and the Pohang Accelerator Laboratory, have pioneered a new imaging method that allows the capture of the light-induced phase transition in vanadium oxide (VO2) with high spatial and temporal resolution.

The new technique implemented by the researchers is based on coherent X-ray hyperspectral imaging at a free electron laser, which has allowed them to visualize and better understand, at the nanoscale, the insulator-to-metal phase transition in this very well-known quantum material.

The crystal VO2 has been widely used in to study light-induced phase transitions. It was the first material to have its solid-solid transition tracked by time-resolved X-ray diffraction and its electronic nature was studied by using for the first time ultrafast X-ray absorption techniques. At room temperature, VO2 is in the insulating phase. However, if light is applied to the material, it is possible to break the dimers of the vanadium ion pairs and drive the transition from an insulating to a metallic phase.

In their experiment, the authors of the study prepared thin samples of VO2 with a gold mask to define the field of view. Then, the samples were taken to the X-ray Free Electron Laser facility at the Pohang Accelerator Laboratory, where an optical laser pulse induced the transient phase, before being probed by an ultrafast X-ray laser pulse. A camera captured the scattered X-rays, and the coherent scattering patterns were converted into images by using two different approaches: Fourier Transform Holography (FTH) and Coherent Diffractive Imaging (CDI). Images were taken at a range of time delays and X-ray wavelengths to build up a movie of the process with 150 femtosecond time resolution and 50 nm spatial resolution, but also with full hyperspectral information.





The surprising role of the pressure

The new methodology allowed the researchers to better understand the dynamics of the phase transition in VO2. They found that pressure plays a much larger role in light-induced phase transitions than previously expected or assumed.

"We saw that the transient phases aren't nearly as exotic as people had believed! Instead of a truly non-equilibrium phase, what we saw was that we had been misled by the fact that the ultrafast transition intrinsically leads to giant internal pressures in the sample millions of times higher than atmospheric. This pressure changes the material properties and takes time to relax, making it seem like there was a transient phase" says Allan Johnson, postdoctoral researcher at ICFO. "Using our imaging method, we saw that, at least in this case, there was no link between the picosecond dynamics that we did see and any nanoscale changes or exotics phases. So, it looks like some of those conclusions will have to be revisited".

To identify the role played by the pressure in the process, it was crucial to use the hyperspectral image. "By combining imaging and spectroscopy into one great image, we are able to retrieve much more information that permits us to actually see detailed features and decipher exactly where they come from," continues Johnson. "This was essential to look at each part of our crystal and determine whether it was a normal or an exotic out-of-equilibrium phase-and with this information we were able to determine that during the phase transitions all the regions of our crystal were the same, except for the pressure".



Challenging research

One of the main challenges the researchers faced during the experiment was to ensure that the crystal sample of VO2 returned to its original starting phase each time and after being illuminated by the laser. To guarantee that this would occur, they conducted preliminary experiments at synchrotrons where they took several crystal samples and repeatedly shone the laser on them to test their capacity to recover back to their original state.

The second challenge resided in having access to an X-Ray free electron laser, large research facilities where the time windows to conduct the experiments are very competitive and in-demand because there are only a few in the world. "We had to spend two weeks in quarantine in South Korea due to the COVID-19 restrictions before we got our one shot of just five days to make the experiment work, so that was an intense time" Johnson recalls.

Although the researchers describe the present work as fundamental research, the potential applications of this technique could be diverse, since they could “look at polarons moving inside catalytic materials, try imaging superconductivity itself, or even help us understand novel nanotechnologies by viewing and imaging inside nanoscale devices” concludes Johnson.

####

For more information, please click here

Contacts:
Alina Hirschmann
ICFO-The Institute of Photonic Sciences

Cell: 691513974

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum communication

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Quantum chemistry

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics: Coupling of electronic and nuclear dynamics revealed in molecules with ultrafast lasers and X-rays July 21st, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Videos/Movies

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project