Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists use blur to sharpen DNA mapping: Rice University researchers transcend optical limits to locate specific sequences

A super-resolution technique developed at Rice University allows fluorescent-labeled probe DNA to pinpoint target DNA sequences in an immobilized strand in ways neither regular nor electron microscopes are able. The technique relies on multiple images of probes binding temporarily to targets as they flow over the strand and are captured by a camera.Credit: Landes Group/Rice University
A super-resolution technique developed at Rice University allows fluorescent-labeled probe DNA to pinpoint target DNA sequences in an immobilized strand in ways neither regular nor electron microscopes are able. The technique relies on multiple images of probes binding temporarily to targets as they flow over the strand and are captured by a camera.

Credit: Landes Group/Rice University

Abstract:
With high-tech optical tools and sophisticated mathematics, Rice University researchers have found a way to pinpoint the location of specific sequences along single strands of DNA, a technique that could someday help diagnose genetic diseases.

Scientists use blur to sharpen DNA mapping: Rice University researchers transcend optical limits to locate specific sequences

Houston, TX | Posted on October 9th, 2013

Proof-of-concept experiments in the Rice lab of chemist Christy Landes identified DNA sequences as short as 50 nucleotides at room temperature, a feat she said is impossible with standard microscopes that cannot see targets that small, or electron microscopes that require targets to be in a vacuum or cryogenically frozen.

The technique called "super-localization microscopy" has been known for a while, Landes said, but its application in biosensing is just beginning.

The work by Landes, Rice postdoctoral associate Jixin Chen and undergraduate student Alberto Bremauntz is detailed in the American Chemical Society journal Applied Materials and Interfaces.

The Rice researchers call their super-resolution technique "motion blur point accumulation for imaging in nanoscale topography" (mbPAINT). With it, they resolved structures as small as 30 nanometers (billionths of a meter) by making, essentially, a movie of fluorescent DNA probes flowing over a known target sequence along an immobilized single strand of DNA.

The probes are labeled with a fluorescent dye that lights up only when attached to the target DNA. In the experimental setup, most would flow by unseen, but some would bind to the target for a few milliseconds, just long enough to be captured by the camera before the moving liquid pulled them away. Processing images of these brief events amidst the background blur allows the researchers to image objects smaller than the natural diffraction limits of light-based imaging, which do not allow for the resolution of targets smaller than the wavelength of light used to illuminate them.

Even the Landes lab's system is subject to these physical limitations. Individual images of fluorescing probes on targets are just a pixelated blur. But it's a blur with a bright spot, and careful analysis of multiple images allows the researchers to pinpoint that spot along the strand.

"The probes are moving so fast that in real time, all we would see with the camera is a line," Chen said. But when the camera firing at 30-millisecond intervals happened to catch a bound probe, it clearly stood out. The probes sometime picked out two sequences along a strand that would have been seen as a single blur via regular fluorescent microscopy.

Landes said one goal for mbPAINT is to map ever-smaller fragments of DNA. "Eventually, we'd like to get down to a couple of nucleotides," she said. "Some diseases are characterized by one amino acid mutation, which is three nucleotides, and there are many diseases associated with very small genetic mutations that we'd like to be able to identify.

"We're thinking this method will be ideally suited for diseases associated with small, localized mutations that are not possible to detect in any other inexpensive way," she said.

Landes sees mpPAINT as not only more cost-effective but also able to capture information electron microscopes cannot.

"One of the reasons people invented electron microscopy is to image objects smaller than light's diffraction limit, because biomolecules such as proteins and DNAs are smaller than that," she said. "But electron microscopy requires cryogenic temperatures or a vacuum. You can't easily watch things react in solution.

"The advent of this technology allows us to see the biological processes of nano-sized objects as they happen in water, with buffers and salts, at room temperature, at body temperature or even in a cell. It's very exciting," Landes said.

Rice graduate students Lydia Kisley and Bo Shaung are co-authors of the paper.

The National Science Foundation, the Welch Foundation and the National Institutes of Health supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Landes Research Group:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project