Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Printed Electronics: the Winner is the Chemical Industry

Abstract:
By Dr Peter Harrop, Chairman, IDTechEx

The chemical industry will end up with most of the added value from printed electronics, one of the fastest growing technologies in the world. Worth over $50 billion to the materials and chemicals industry in 2024, the resultant devices and processes are of vital interest to industries as diverse as consumer goods, healthcare, aerospace, electronics, media and transit - a breadth that reduces business risk, particularly if common formulations can be identified.

Printed Electronics: the Winner is the Chemical Industry

Cambridge, MA | Posted on August 9th, 2013

The term "printed electronics" embraces electrics as well as devices that employ thin films likely to be printed or coated with customised fine chemicals in future. It is allowing electronics to be used in places it has never been before because it is variously transparent, stretchable, biodegradable or on and in paper for instance. It is improving existing electronics and electrics.

New report - de-risk your investment in fine chemicals

One new IDTechEx report is specifically designed to address the needs of chemical and materials companies and researchers - Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT . It is essential for companies entering the new electrical and electronic product space, including printed electronics, to identify the most profitable and widely useful functional compounds and elements needed including allotropes of carbon - this report does that. Morphologies, form factors, derivatives, reasons, trends and niche opportunities are examined so suppliers can de-risk their investment.

Thirty-seven disruptive new device families important to the chemical industry are analysed, from forms of flexible photovoltaics to fuel cells, artificial muscle, memristors, metamaterials, new forms of lithium battery and nano- electromechanical systems NEMS. The report determines the most important elements and compounds needed for them and the electrical functions that they perform, plus future trends and commonalities between formulations. Several of the world's largest chemical companies asked for this.

For example, the widest future use of fine inorganic and organic compounds and carbon allotropes in the new electrics and electronics is, in order of breadth of application:

1: Copper
2: Aluminium
3: Silver
4: Polyethylenes
5: Carbon nanotubes
6: Graphene
7=: Indium compounds, Titanium compounds and Fluoropolymers
8: Silicon compounds
9=: Zinc compounds, Polythiophenes

On the other hand, those materials that are most versatile in electronic and electrical functions and therefore potentially providing widespread, high added value are identified as titanium compounds, zinc compounds and fluoropolymers. Thirdly IDTechEx identifies those that will be sold in the largest gross value over the next ten years, a category that includes those that are lithium and gallium compounds. The report profiles 113 global organizations involved in carbon allotropes for the new electronics and electrics. While manufacturers in North America seem to focus more on SWCNTs; Asia and Europe, with Japan on top, are leading the production of MWCNTs with Showa Denko, Mitsui and Hodogaya Chemical being the largest companies.

The new electronics and electrics spans nano- to very large devices. For example, one of the key enabling technologies - printed electronics - gives us viable electronic billboard sheets and huge areas of unrolled photovoltaics, soon in stretchable and conformal form. There are new device principles and chemistries. Whether it is totally new forms of flat screen displays or re-invented lithium-ion batteries with completely different anode, cathode and electrolyte compounds, those at the start of the value chain tend to make higher margins than those making the devices themselves.

Of course it is arbitrary whether some devices are really new because some are very old inventions in new forms or they have been in the wilderness for decades but are now ready for prime time. Others are experiments that may fail technically or in the marketplace. Others could choose a somewhat different choice of "new" device families but IDTechEx believes that they would reach much the same conclusions concerning the league table of substances required.

Key elements and compounds for the next ten years

IDTechEx finds that the metals that will be most widely used over the coming decade are aluminium, copper and silver, notably for conductive patterning in interconnects, electrodes, antennas and actuators. The inorganic elemental semiconductor most in demand in the new electronics will be silicon. Mainly, it takes new forms such as ink. The numerous functions of fine chemicals in the new electronics and electrics are annotated in the report; including adhesive, active electrode, active substrate, binder, barrier layer, electroactive material or dielectric elastomer, electrochemical membrane, electrolyte, electret, ferroelectric memory and many more.

Of the opportunities for inorganic compounds, IDTechEx discovers that lithium salts for lithium-ion batteries are particularly complex, changing in formulation and morphology and growing in large demand. IDTechEx therefore give a further analysis of this opportunity. In the report, there is comparison of 138 lithium-based rechargeable battery manufacturers and the 15 key compounds and elements they use and develop, with cathode and anode chemistry, electrolyte morphology, cell format and form of materials used.

For more information see Functional Materials for Future Electronics: Metals, Inorganic & Organic Compounds, Graphene, CNT.

World's largest event

Printed Electronics USA, the world's largest event on the topic and attended by more buyers than any other, is taking place in Santa Clara, CA, on November 20-21. It is co-located with many satellite events and parallel conference sessions on related topics such as graphene, OLEDs and supercapacitors. The international tradeshow, with more than 150 exhibitors, will cover all the technologies throughout the entire supply chain across all major component types. Learn more about IDTechEx's event here: www.PrintedElectronicsUSA.com
About IDTechEx
IDTechEx guides your strategic business decisions through its Research and Events services, helping you profit from emerging technologies. We provide independent research, business intelligence and advice to companies across the value chain based on our core research activities and methodologies providing data sought by business leaders, strategists and emerging technology scouts to aid their business decisions. To discuss your needs please contact us on or see www.IDTechEx.com.
IDTechEx Research Subscriptions and Market Intelligence Portal
Subscription services allow you to access a wide range of our technology and market research on a given topic or across topics, providing you with unlimited access to new related content throughout the subscription period at tremendous value.

One subscription option available is the Market Intelligence Portal. This provides you with timely business-critical market intelligence on emerging technologies, continually supporting you in assessing opportunity and making business decisions. Subscribers have access to two market research reports, regular webinars, weekly analytical articles, 3-5 weekly impartial company profiles, our raw forecast data, one hour of analyst time and company presentations gathered at our conferences.

To discover which subscription package is most suitable for you please see www.IDTechEx.com/subscriptions or to discuss your specific needs please email .

####

For more information, please click here

Contacts:

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project