Home > Press > NDSU Research Connects the Dots to Renewable Energy Future
Svetlana Kilina, Ph.D., assistant professor of chemistry and biochemistry at North Dakota State University, Fargo, has received a $750,000 five-year award from the U.S. Department of Energy Office of Science Early Career Research Program for “Modeling of Photoexcited Process at Interfaces of Functionalized Quantum Dots.” |
Abstract:
Svetlana Kilina, Ph.D., assistant professor of chemistry and biochemistry at North Dakota State University, Fargo, has received a $750,000 five-year award from the U.S. Department of Energy Office of Science Early Career Research Program. Funding will be used to conduct research outlined in Dr. Kilina's proposal titled "Modeling of Photoexcited Process at Interfaces of Functionalized Quantum Dots."
Dr. Kilina's research occurs at the intersection of renewable energy, high-performance computing, nanotechnology and chemistry. Only 68 awardees were selected from a pool of about 850 university- and national laboratory-based applicants, based on peer review by outside scientific experts.
Quantum dots are nanocrystals discovered by scientists in the 1980s. Ranging in size from two to 10 nanometers, billions of them could fit on the head of a pin. Their tiny sizes belie the Herculean impact they could make in semiconductors and energy. Dr. Kilina's work centers on new generation solar cells and fuel cells using quantum-dot-based materials.
Materials at the nanoscale level behave differently than at larger scales. Energized quantum dots absorb and emit light. The color of the light depends on the size of the dot. In addition, one quant of light can generate more than two carriers of electric current (two electrons-hole pairs instead of one) in quantum dots. As a result, quantum dots could convert energy to light or vice versa more efficiently than conventional energy materials based on bulk semiconductors such as silicon. That makes quantum dots very promising materials for solar cells and other energy applications.
"One of the main obstacles in the synthesis of quantum dots is the controllable chemistry of the quantum dot surface," said Dr. Kilina. "Due to their nanosize, the dots are extremely chemically reactive, and different organic molecules from solvent/air environment interact with the surface of the quantum dot during and after synthesis. These molecules cover the surface of the quantum dot like a shell, influencing its optical and electronic properties."
Dr. Kilina uses supercomputers to conduct computer-simulated experiments, investigate and advance her research in this field. Her goal is to generate theoretical insights to the surface chemistry of quantum dots, which are critical to design efficient quantum-dot-based materials for solar energy conversion and lighting applications.
To apply her model and algorithmic methods, Dr. Kilina's research group uses supercomputers at the NDSU Center for Computationally Assisted Science and Technology, in addition to Department of Energy and Los Alamos National Laboratory leadership-class, high-performance computing facilities. The combination of NDSU supercomputing and government facilities substantially reduces the amount of time needed for the massive calculations used in this research.
"Dr. Kilina's research aims to gain fundamental understanding of nanomaterials at the molecular and electronic level," said Dr. Greg Cook, chair of NDSU's Department of Chemistry and Biochemistry. "Insights gained from this research will enable the progression of solar energy technology to help solve the world's energy challenges. The Department of Energy award recognizes Dr. Kilina's unique expertise in the area of theoretical modeling of these materials critical for the future," said Cook.
Dr. Kilina's research addresses fundamental questions of modern materials science that affect the design and manufacture of new-generation energy conversion devices. To design and manufacture such devices requires developing new multi-functional materials with controllable properties. As part of Dr. Kilina's work centered around new generation solar cells and fuel cells, she develops and applies a new generation non-adiabatic photoinduced dynamics methodology that simultaneously includes electron-hole coupling response for excitonic effects and exciton-phonon coupling critical in photoexcitation and couplings between electronics and crystal-lattice vibrations responsible for energy-to-heat losses.
It is anticipated that the acquired theoretical knowledge gained from the research at NDSU will help better explain and interpret experimental data and could facilitate rational design of new nanostructures with desired optical, transport, and light harvesting properties that are fundamental to a myriad of clean energy technologies.
According to the U.S. Department of Energy website, the Office of Science Early Career Research Program awards are designed to bolster the nation's scientific workforce by providing support to exceptional researchers during the crucial early career years, when many scientists do their most formative work. The research awards also aim at providing incentives for scientists to focus on mission research areas that are a high priority for the Department of Energy and the nation. Dr. Kilina's research is funded by the Office of Science, U.S. Department of Energy, Award No. DE-SC0008446.
Dr. Svetlana Kilina joined the faculty at NDSU in 2010. She completed a post-doctoral fellowship at Los Alamos National Laboratory, Los Alamos, N.M., after receiving her Ph.D. in physical chemistry from the University of Washington, Seattle, Wash. She received a master's degree in physics from Belarus State University, Minsk, Belarus.
Dr. Kilina's research was selected for most recent funding by the Office of Basic Energy Sciences and the U.S. Department of Energy Experimental Program to Stimulate Competitive Research. She previously received research funding from the North Dakota Experimental Program to Stimulate Competitive Research from 2010 to 2012.
####
Contacts:
Carol Renner
701.231.5174
Dr. Svetlana Kilina
701.231.5622
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||