Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Copper-nickel nanowires could be perfect fit for printable electronics

Abstract:
While the Statue of Liberty and old pennies may continue to turn green, printed electronics and media screens made of copper nanowires will always keep their original color.

Copper-nickel nanowires could be perfect fit for printable electronics

Durham, NC | Posted on May 29th, 2012

Duke University chemists created a new set of flexible, electrically conductive nanowires from thin strands of copper atoms mixed with nickel. The copper-nickel nanowires, in the form of a film, conduct electricity even under conditions that break down the transfer of electrons in plain silver and copper nanowires, a new study shows.

Because films made with copper-nickel nanowires are stable and are relatively inexpensive to create, they are an attractive option to use in printed electronics, products like electronic paper, smart packaging and interactive clothing, said Benjamin Wiley, an assistant professor of chemistry at Duke. His team describes the new nanowires in a NanoLetters paper published online May 29.

The new copper-nickel nanowires are the latest nanomaterial Wiley's lab has developed as a possible low-cost alternative to indium tin oxide, or ITO. This material is coated on glass to form the transparent conductive layer in the display screens of cell phones, e-readers and iPads.

Indium, at $600 - $800 per kilogram, is an expensive rare-earth element. Most of it is mined and exported from China, which is reducing exports, causing indium's price to increase. Indium tin oxide is deposited as a vapor in a relatively slow, expensive coating process, adding to its cost. And the film is brittle, which is a major reason the signature pads at grocery store checkout lines eventually fail and why there is not yet a flexible, rollable iPad.

Last year, Wiley's lab created copper nanowire films that can be deposited from a liquid in a fast, inexpensive coating process. These conductive films are much more flexible than the current ITO film. Copper is also one-thousand times more abundant and one-hundred times cheaper than indium. One problem with copper nanowire films, however, is that they have an orange tint that would not be desirable in a display screen. The copper-based films also oxidize gradually when exposed to air, suffering from the same chemical reaction that turns the Statue of Liberty or an old penny green, Wiley said.

Nickels, however, rarely turn green. Inspired by the U.S. five-cent piece, Wiley wondered if he could prevent oxidation of the copper nanowires by adding nickel. He and his graduate student, Aaron Rathmell, developed a method of mixing nickel into the copper nanowires by heating them in a nickel salt solution.

"Within a few minutes, the nanowires become much more grey in color," Wiley said.

Rathmell and Wiley then baked the new nanowires at various temperatures to test how long they conducted electricity and resisted oxidation. The tests show that the copper-nickel nanowire films would have to sit in air at room temperature for 400 years before losing 50 percent of their electrical conductivity. Silver nanowires would lose half of their conductivity in 36 months under the same conditions. Plain copper nanowires would last only 3 months.

While the copper-nickel nanowires stack up against silver and copper alone, they aren't going to replace indium-tin-oxide in flat-panel displays any time soon, Wiley said, explaining that, for films with similar transparency, copper-nickel nanowire films cannot yet conduct the same amount of electricity as ITO. "Instead, we're currently focusing on applications where ITO can't go, like printed electronics," he said.

The greater stability of copper-nickel nanowires makes them a better alternative to both copper and silver for applications that require a stable level of electrical conductivity for more than a few years, which is important for certain printed electronics applications, Wiley said.

He explained that printed electronics combine conductive or electronically active inks with the printing processes that make magazines, consumer packaging and clothing designs. The low cost and high speed of these printing processes make them attractive for the production of solar cells, LEDs, plastic packaging and clothing.

A Durham, NC startup company, NanoForge Corp., which Wiley co-founded has begun manufacturing copper-nickel nanowires to test in these and other potential applications.

Citation:

"Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks'" Rathmell, A. R., Nguyen, M., Chi, M. and Wiley, B. J. NanoLetters, May 29, 2012. DOI: 10.1021/nl301168r

####

For more information, please click here

Contacts:
Ashley Yeager

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project