Home > Press > New $46-million labs to enable research at frontiers of mechanical engineering and nanotechnology
Abstract:
A next-generation nano-mechanical engineering lab complex at the University of Michigan will enable researchers to study the forces at work at the smallest scales and to advance nano-technologies in energy, manufacturing, healthcare and biotechnology.
The Center of Excellence in Nano Mechanical Science and Engineering is a $46 million facility made possible in part by a $9.5 million grant from the National Institute of Standards and Technology, announced today. The three-story complex will include 60 lab modules and space for 18 professors in a 62,880 square-foot addition to the G.G. Brown Laboratories on Hayward Street on North Campus.
"Michigan Engineering has always been strong in traditional large-scale mechanical engineering areas including automotive research. This new facility will propel us to the next level. It will allow researchers to pursue exciting projects at the frontiers of mechanical science and engineering, where the discipline intersects with nanoscience and biology," said David Munson, the Robert J. Vlasic Dean of Engineering.
"We would like to thank our federal lawmakers U.S. Rep. John Dingell, U.S. Sen. Carl Levin and U.S. Sen. Debbie Stabenow as well as Gov. Jennifer Granholm for their support throughout this process," he said.
This center will complement the College of Engineering's Lurie Nanofabrication Facility, a state-of-the art lab where researchers focus on building devices at the nanoscale. In the new complex, researchers will develop the tools to measure, image, study and test nanoscale phenomena and devices.
"The award is great news for the University of Michigan and the state of Michigan," said Governor Jennifer Granholm. "This new facility will help train the next generation of engineers in our state, and produce the cutting-edge research and development in energy, health care and manufacturing that will continue to diversify our economy and create jobs."
The center will be designed with a tightly controlled experimental environment. Existing labs in mechanical engineering, designed for macroscale research, don't have the right temperature, dust, vibration and noise controls for researchers to take accurate nanoscale measurements, said Jack Hu, associate dean for academic affairs in engineering. Hu is a professor of Mechanical Engineering and the G. Lawton and Louise G. Johnson Professor of Engineering. He led the proposal effort to NIST.
"Our current setting is full of water pumps and various machine tools, which are not appropriate for the new research we are pursuing," Hu said.
"Nanotechnology is full of promise," Hu said. "It has applications in manufacturing, in medicine and in solar and thermal energy conversion, to name just a few fields. Fundamental to all these areas is a good understanding of the mechanical behavior of nanoparticles and we don't yet have that. Through this facility, we are providing an enabling platform for this research and innovation."
Work in the lab will be divided into four thrusts: nano-measurement, single biomolecule analysis, nanoscale energy conversion and nanomanufacturing, and nano- and microelectromechanical systems for medical research and diagnostics. Some of the projects will take place in the labs are:
• Measuring the twisting forces at work in a DNA molecule, which could help researchers understand how these blueprints of life copy and repair themselves.
• Testing new techniques that map strain, temperature and forces in materials in order to understand one of the most vexing phenomena in engineering: why and how does a material's strength depend on its microscopic structure. Traditional laws cannot predict the strength of devices at the smallest scales. This research could bring about lighter materials that could improve fuel economy.
• Understanding how biological molecules interact and reproduce, how they transport molecular cargoes, and how they convert chemical signals into mechanical work. New knowledge of these processes could aid in the development of better drug delivery and treatments for cancer and neurodegenerative diseases.
• Building a microelectromechanical biochip that can affordably count thousands of single T-cells for HIV/AIDS monitoring in resource-limited settings.
• Figuring out why carbon nanotubes are so strong and conductive. They are stronger and stiffer than steel. They conduct electricity better than copper, and conduct heat better than diamonds. But to integrate them into larger devices, engineers must be able to understand and predict these properties.
Construction is expected to start in spring 2011 and finish in May 2013. In addition to the NIST funding, this project is supported by $15 million from the University of Michigan, $6.5 million from the College of Engineering, and $15 million in private commitments.
####
About University of Michigan
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $180 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.
For more information, please click here
Contacts:
Nicole Casal Moore
(734) 647-7087
Copyright © University of Michigan
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||