Home > Press > Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene
Graphene, as seen in the above renderings, is an atom-thick sheet of carbon arranged in a honeycomb structure. It has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building blocks of nanoelectronics, but is difficult to produce in bulk. A team of Rensselaer researchers has brought science a step closer to realizing this important goal of a simple, efficient way to mass-produce graphene. Image Credit: Rensselaer/Kar |
Abstract:
New, Simple Technique Enables Large-Scale Production of Graphene at Room Temperature; Researchers Use Graphene to Build Chemical Sensors, Ultracapacitors
Researchers at Rensselaer Polytechnic Institute have developed a simple new method for producing large quantities of the promising nanomaterial graphene. The new technique works at room temperature, needs little processing, and paves the way for cost-effective mass production of graphene.
An atom-thick sheet of carbon arranged in a honeycomb structure, graphene has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building block of nanoelectronics. Since graphene's discovery in 2004, researchers have been searching for an easy method to produce it in bulk quantities.
A team of interdisciplinary researchers, led by Swastik Kar, research assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, has brought science a step closer to realizing this important goal. By submerging graphite in a mixture of dilute organic acid, alcohol, and water, and then exposing it to ultrasonic sound, the team discovered that the acid works as a "molecular wedge, " which separates sheets of graphene from the parent graphite. The process results in the creation of large quantities of undamaged, high-quality graphene dispersed in water. Kar and team then used the graphene to build chemical sensors and ultracapacitors.
"There are other known techniques for fabricating graphene, but our process is advantageous for mass production as it is low cost, performed at room temperature, devoid of any harsh chemicals, and thus is friendly to a number of technologies where temperature and environmental limitations exist," Kar said. "The process does not need any controlled environment chambers, which enhances its simplicity without compromising its scalability. This simplicity enabled us to directly demonstrate high-performance applications related to environmental sensing and energy storage, which have become issues of global importance."
Results of the study, titled "Stable Aqueous Dispersions of Non-Covalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications," were published online Thursday, June 17, 2010, by the journal Nano Letters. The study will also be the cover story of the November print edition of Nano Letters.
Graphene eluded scientists for years but was finally made in the laboratory in 2004 with the help of a common office supply - clear adhesive tape. Graphite, the common material used in most pencils, is made up of countless layers of graphene. Researchers at first simply used the gentle stickiness of tape to pull layers of graphene from a piece of graphite.
Today, graphene fabrication is much more sophisticated. The most commonly used method, however, which involves oxidizing graphite and reducing the oxide at a later stage in the process, results in a degradation of graphene's attractive conductive properties, Kar said. His team took a different route.
The researchers dissolved 1-pyrenecarboxylic acid (PCA) in a solution of water and methanol, and then introduced bulk graphite powder. The pyrene part of PCA is mostly hydrophobic, and clings to the surface of the also-hydrophobic graphite. The mixture is exposed to ultrasonic sound, which vibrates and agitates the graphite. As the molecular bonds holding together the graphene sheets in graphite start to weaken because of the agitation, the PCA also exploits these weakening bonds and works its way between the layers of graphene that make up the graphite. Ultimately, this coordinated attack results in layers of graphene flaking off of the graphite and into the water. The PCA also helps ensure the graphene does not clump and remains evenly dispersed in the water. Water is benign, and is an ideal vehicle through which graphene can be introduced into new applications and areas of research, Kar said.
"We believe that our method also will be useful for applications of graphene which require an aqueous medium, such as biomolecular experiments with living cells, or investigations involving glucose or protein interactions with graphene," he said.
Using ultrathin membranes fabricated from graphene, the research team developed chemical sensors that can easily identify ethanol from within a mixture of different gases and vapors. Such a sensor could possibly be used as an industrial leakage detector or a breath-alcohol analyzer. The researchers also used the graphene to build an ultra-thin energy-storage device. The double-layer capacitor demonstrated high specific capacitance, power, and energy density, and performed far superior to similar devices fabricated in the past using graphene. Both devices show great promise for further performance enhancements, Kar said.
Co-authors on the Nano Letters paper are Rensselaer Post Doctoral Research Associate Xiaohong An; Assistant Professor Kim M. Lewis; Clinical Professor and Center for Integrated Electronics Associate Director Morris Washington; and Professor Saroj Nayak, all of the Department of Physics, Applied Physics, and Astronomy; Rensselaer post-doctoral researcher Trevor Simmons of the Department of Chemistry and Chemical Biology; along with Rakesh Shah, Christopher Wolfe, and Saikat Talapatra of the Department of Physics at Southern Illinois University Carbondale.
The research project was supported by the Interconnect Focus Center New York at Rensselaer, as well as the National Science Foundation (NSF) Division of Electrical, Communications and Cyber Systems.
For more information on Kar's research, visit his website at:
www.rpi.edu/dept/phys/faculty/profiles/kar.html
For more information on graphene research at Rensselaer, visit:
* Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials - news.rpi.edu/update.do?artcenterkey=2715
* Student Inventor Tackles Challenge of Hydrogen Storage - news.rpi.edu/update.do?artcenterkey=2690
* Light-Speed Nanotech: Controlling the Nature of Graphene - news.rpi.edu/update.do?artcenterkey=2528
* Graphene Nanoelectronics: Making Tomorrow's Computers from a Pencil Trace - news.rpi.edu/update.do?artcenterkey=2253
####
For more information, please click here
Contacts:
Michael Mullaney
(518) 276-6161
Copyright © Rensselaer Polytechnic Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||