Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Highly Efficient Solar Cells Could Result from Quantum Dot Research

Abstract:
Conventional solar cell efficiency could be increased from the current limit of 30 percent to more than 60 percent, suggests new research on semiconductor nanocrystals, or quantum dots, led by chemist Xiaoyang Zhu at The University of Texas at Austin.

Zhu and his colleagues report their results in this week's Science.

Highly Efficient Solar Cells Could Result from Quantum Dot Research

Austin, TX | Posted on June 20th, 2010

The scientists have discovered a method to capture the higher energy sunlight that is lost as heat in conventional solar cells.

The maximum efficiency of the silicon solar cell in use today is about 31 percent. That's because much of the energy from sunlight hitting a solar cell is too high to be turned into usable electricity. That energy, in the form of so-called "hot electrons," is lost as heat.

If the higher energy sunlight, or more specifically the hot electrons, could be captured, solar-to-electric power conversion efficiency could be increased theoretically to as high as 66 percent.

"There are a few steps needed to create what I call this 'ultimate solar cell,'" says Zhu, professor of chemistry and director of the Center for Materials Chemistry. "First, the cooling rate of hot electrons needs to be slowed down. Second, we need to be able to grab those hot electrons and use them quickly before they lose all of their energy."

Zhu says that semiconductor nanocrystals, or quantum dots, are promising for these purposes.

As for the first problem, a number of research groups have suggested that cooling of hot electrons can be slowed down in semiconductor nanocrystals. In a 2008 paper in Science, a research group from the University of Chicago showed this to be true unambiguously for colloidal semiconductor nanocrystals.

Zhu's team has now figured out the next critical step: how to take those electrons out.

They discovered that hot electrons can be transferred from photo-excited lead selenide nanocrystals to an electron conductor made of widely used titanium dioxide.

"If we take the hot electrons out, we can do work with them," says Zhu. "The demonstration of this hot electron transfer establishes that a highly efficient hot carrier solar cell is not just a theoretical concept, but an experimental possibility."

The researchers used quantum dots made of lead selenide, but Zhu says that their methods will work for quantum dots made of other materials, too.

He cautions that this is just one scientific step, and that more science and a lot of engineering need to be done before the world sees a 66 percent efficient solar cell.

In particular, there's a third piece of the science puzzle that Zhu is working on: connecting to an electrical conducting wire.

"If we take out electrons from the solar cell that are this fast, or hot, we also lose energy in the wire as heat," says Zhu. "Our next goal is to adjust the chemistry at the interface to the conducting wire so that we can minimize this additional energy loss. We want to capture most of the energy of sunlight. That's the ultimate solar cell.

"Fossil fuels come at a great environmental cost," says Zhu. "There is no reason that we cannot be using solar energy 100 percent within 50 years."

Funding for this research was provided by the U.S. Department of Energy. Coauthors include William Tisdale, Brooke Timp, David Norris and Eray Aydil from the University of Minnesota, and Kenrick Williams from The University of Texas at Austin.

####

For more information, please click here

Contacts:
Lee Clippard
College of Natural Sciences
512-232-0675

Dr. Xiaoyang Zhu
professor of chemistry
512-471-9914

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project