Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano design, just like in nature

Abstract:
Researchers at Vienna University of Technology (TU Vienna) are currently coordinating an EU project. They are using biological principles as the inspiration to develop a new bionic fuel cell.

Nano design, just like in nature

Vienna | Posted on June 15th, 2010

Every living cell in our body can do it: covered with a thin membrane known as a cell membrane or nanomembrane, the cells can deliberately let specific substances in and out. Although it is thousands of times thinner than a human hair, this nanomembrane has an extremely complex structure and function. Three Nobel prizes have already in recent years been awarded for improving our understanding of these nanomembranes.

Biological nanomembrane has hundreds of very tinny channels which convey water, electrical charges and nutrients around and in doing so, create an equilibrium within the cell. However, we still do not know about many of the functions and structural details, but only channels which balance the water and proton exchange have been understand in depth. "These extremely fine cell membrane channels, with the ability to selectively convey protons, function in exactly the same way as fuel cells created by humans", explains Dr Werner Brenner, "only this naturally occurring process is considerably more efficient".

Fuel cells: an alternative to oil

Today, fuel cells are seen as a serious alternative to oil, which until now has been the basis for electrical energy and mobility. However, the earth's oil reserves are rapidly running out, under economic pressure to drill ever deeper into the seabed. Oil combustion also generates CO2, soot and other pollutants. In contrary, the only waste product from a fuel cell is water.

The EU project focuses on the design of the main component of every fuel cell - i.e. the membrane - with the intention of conveying protons more efficiently than in previous solutions. "It is not easy task, but it is possible. Nature has been producing these structures for billions of years and their effectiveness can be seen in every living organism. Our task is to transfer the structure of these natural nanochannels to an artificial nanomembrane, which is itself only a few hundred nanometres thick", explains Dr Jovan Matovic.

A wide range of scientific approaches are required for this project, ranging from solid state physics and nanotechnology through to chemistry. Therefore, international cooperation with six universities, research institutes and companies is also of great importance. The EU project is being coordinated by the TU Vienna research team of Dr Werner Brenner, Dr Jovan Matovic and Dr Nadja Adamovic at the Institute of Sensor and Actuator Systems.

The University research team is confident: "The results of this project should have far-reaching significance for our society. If we succeed in creating the nanochannels exactly as planned, then completely different fields of application will open up, such as the accurately controlled delivery of medicine, water desalination or even new types of sensors", explains Dr Nadja Adamovic, "In this project, the boundaries between "artificial and "natural" are becoming even more blurred".

####

For more information, please click here

Contacts:
Vienna University of Technology
Institute of Sensor and Actuator Systems
Floragasse 7, 1040 Vienna

Dr Werner Brenner Dipl.Ing
T : +43 (1) 58801 - 366 81


Dr Jovan Matovic Dipl.Ing
T : +43 (1) 58801 - 766 67


Dr Nadja Adamovic Dipl.Ing
T : +43 (1) 58801 - 766 48


Author:
Vienna University of Technology
Public Relations Office
Bettina Neunteufl, MAS
T : +43 (1) 58801 - 41025

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Fuel Cells

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project