Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New catalyst could move fuel cell technology closer to mainstream

Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).
Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).

Abstract:
Long hampered by high manufacturing costs and durability issues, fuel cell technology could overcome those obstacles and take a significant step towards mainstream adoption thanks to a finding by a Texas A&M University chemical engineering professor.

New catalyst could move fuel cell technology closer to mainstream

College Station, TX | Posted on May 9th, 2010

Investigating the use of alternative materials as catalysts in fuel cells, Perla Balbuena, professor in the university's Artie McFerrin Department of Chemical Engineering, has found a class of composite materials that show early indications of being just as effective — and even more durable — than the costly platinum catalysts typically used in fuel cells.

The findings from her work, which is funded by the U.S. Department of Energy (DOE), appear in the January edition of the Journal of Physical Chemistry Letters.

Because of their potential as a clean source of virtually continuous energy, fuel cells are a chief area of interest to a wide variety of entities, including automobile manufacturers and the U.S. government, which has invested nearly a billion dollars in research and development of the technology.

In a basic fuel cell, Balbuena explains, the platinum takes the form of incredibly small but expensive particles that are deposited on an electrode within the fuel cell. The electrode helps to trigger complex chemical reactions that ultimately result in the conversion of oxygen and hydrogen into water and electrical energy.

Previous attempts to find more affordable alternatives for pure platinum catalysts have been unsuccessful, Balbuena says, noting that the nickel and iron-based alloy substitutes used were less durable, dissolving inside the fuel cell at a faster rate than even the traditional platinum catalysts. This dissolution occurs, Balbuena notes, because of an acidic polymeric membrane located next to the catalyst within the fuel cell.

"This membrane, although necessary, creates another problem with regard to the design of the catalyst," Balbuena says. "When nanoparticles of platinum or platinum alloys come into contact with this acid medium they can dissolve. The less ‘noble' the metal, the easier to dissolve, and in that scale, platinum is the most ‘noble' metal. When this happens, the catalyst can be negatively affected, rendering the chemical reaction less efficient.

"This is the issue we are trying to address - trying to understand the reasons behind the dissolution of these metals and the possible solutions for this problem," Balbuena says.

Looking to overcome that problem, Balbuena, an authority on materials and catalytic processes, employed computational chemistry methods to investigate viable catalysts that would show enhanced performance as well as improved durability. In contrast to experimental models, computational chemistry makes use high-performance computers to find numerical solutions of fundamental equations involving interactions among atoms and electrons. These computational results translate into finding out the best materials for the desired task. It's a pivotal first step in a process that saves scientists from costly trial-and-error approaches in the lab.

Through that approach, Balbuena and her research group at Texas A&M were able to demonstrate the potential durability and activity properties of a new "core-shell" composite material that can serve as a catalyst within a fuel cell. The material, she explains, still uses platinum but less of it, meaning it's cheaper. What's more, in its core, the material uses other key elements in a way that ensures the core particles will not segregate to the surface and dissolve in the polymeric membrane.

"In essence, we anchor less-expensive core elements that play a supportive role and let the ultra-thin platinum film on the surface exert its catalytic effect, that is to accelerate the desired reactions," Balbuena explains.

It's a finding with significant implications for the widespread adoption of fuel cell technology. The DOE's Solid State Energy Conversion Alliance estimates fuel cells will need to cost $700 per kilowatt to serve as a viable energy alternative. Current technology, however, costs nearly 10 times that amount per kilowatt.

A more affordable, durable catalyst could help lower the cost of fuel cell production, says Balbuena, who notes the composite material she has found meets a set of standard properties that DOE has set for the durability and makeup of such catalysts.

Having successfully met those criteria, the next step for the composite material, Balbuena says, is actual production and laboratory testing — aspects of the research that she is planning on exploring with potential experimental partners who have taken note of her findings and hope to begin building the new electrode catalysts in the near future.

"It is superb because as a researcher you not only want to contribute basic fundamental knowledge but you also want such knowledge triggering practical applications," Balbuena says. "When you discover something like this it is very exciting because we see that we can convert this study into something practical and useful — bringing fuel cell technology a step closer to realization."

####

About Texas A&M University
This research-intensive flagship university with 10 colleges was recently ranked first in the nation by The Washington Monthly for "tangible contributions to the public interest." U.S. News and World Report ranked Texas A&M third nationally as a "best value" among public universities. Many degree programs are ranked among the top 10 in the country.

For more information, please click here

Contacts:
Perla Balbuena
(979) 845-3375


Ryan A. Garcia
(979) 845-9237

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project