Home > Press > Carbon nanotubes with improved dispersibility
![]() |
Abstract:
New product grade: Baytubes® C 70 P
Bayer MaterialScience is introducing a new grade of carbon nanotubes (CNTs) at the Nanotech trade show in Tokyo from February 17 to 19. Compared with the existing product Baytubes® C 150 P, the CNTs with the trade name Baytubes® C 70 P are characterized by improved dispersibility, making them highly suited to use in mechanically sensitive polymers. Furthermore, economic advantages can result from the shorter times required to disperse the nanotube agglomerates in water and other low-viscosity liquids.
"This new trial product is our response to inquiries from our customers, who are looking for better dispersibility from the Baytubes® agglomerates. The new product is more easily incorporated than Baytubes® C 150 P, as reflected by its greatly reduced bulk density of just 45 to 95 kilograms per cubic meter. Therefore, Baytubes® C 70 P are ideal for direct incorporation in mechanically sensitive thermoplastics," explains Dr. Heiko Hocke, a carbon nanotubes specialist at Bayer MaterialScience. "With regard to their other properties, the two Baytubes® grades are virtually the same." Multi-wall carbon nanotubes, with their very large length-to-diameter ratio, display very high tensile strength and exceptional electrical and thermal conductivity.
Baytubes® are agglomerated CNTs and offer a very high degree of purity. The agglomerates can be easily and safely handled and efficiently processed. Even small amounts are capable of imparting new properties to dispersions, plastics, metals and other materials. The potential fields of application for these modified materials range from sporting goods to the electronics industry and mechanical engineering.
Bayer MaterialScience is one of the few companies worldwide capable of manufacturing carbon nanotubes with a high degree of purity and a consistent level of quality on an industrial scale, thanks to an innovative processing method developed in-house. Only recently, a new pilot plant for CNTs with an annual capacity of 200 tons has been inaugurated in Leverkusen.
####
About Bayer MaterialScience
With 2008 sales of EUR 9.7 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2008, Bayer MaterialScience had 30 production sites and employed approximately 15,100 people around the globe. Bayer MaterialScience is a Bayer Group company.
For more information, visit www.bayermaterialscience.com and www.baytubes.com
For more information, please click here
Contacts:
Dr. Frank Rothbarth
External Communications / Trade press
Address: Bayer MaterialScience AG
Building: K 12
Germany-51368 Leverkusen
Telephone: + 49 214 30-25363
Telefax: + 49 214 30-66426
Copyright © Bayer MaterialScience
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Sports
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020
Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |