Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ORNL super water repellent could cause big wave in market

Abstract:
A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities.

ORNL super water repellent could cause big wave in market

OAK RIDGE, TN | Posted on November 29th, 2007

The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The patent-pending process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

"My goal was to make the best possible water repellent surface," Simpson said. "What I developed is a glass powder coating material with remarkable properties that cause water-based solutions to bounce off virtually any coated surface."

The ORNL nano-structured material maintains a microscopic layer of air on surfaces even when submerged in water, resulting in a profound change in the basic water-solid interface. Simpson likes to refer to this as the "Moses effect."

Traditionally, Simpson noted that superhydrophobic coatings were expensive, were of poor water repellent quality or lacked the durability to make them practical.

"Existing high-quality superhydrophobic materials are generally relegated to university research laboratories because they are difficult and expensive to produce, not scalable to large volumes and not amenable to being made into a commercially viable coating," Simpson said.

The process for making superhydrophobic glass powder is based on differentially etching of two glass phases from phase-separated glass. Simpson starts with borosilicate phase separating glass as the base material, which he heats to separate further. He then crushes this material into a powder and differentially etches the powder to completely remove the interconnected borate glass phase. Differential etching makes the powder porous and creates nanoscale sharpened features. Finally, Simpson treats the powder with a special hydrophobic solution to change the glass surface chemistry from hydrophilic to hydrophobic.

The powder's porosity and nanoscale sharpened features amplify the effect of water's surface tension and causes the powder to become "unwettable."

"Such a superhydrophobic powder has many features and advantages, some of which include ease of manufacturing, low cost and scalability," Simpson said. "The fact that the coral-like nanoscale features can be preserved as the powder grain size is reduced allows us to make very small superhydrophobic powder grains."

That translates into needing only a small amount of inexpensive superhydrophobic powder to coat a relatively large surface area.

Another feature of this powder is its thermal insulation characteristics. Water does not enter the grain pores because the powder grains are superhydrophobic. This results in a dry breathable coating with trapped insulating air throughout. And, because the powder consists almost entirely of porous amorphous silica, it also makes a very good electrical insulator. In addition, since the powder creates a layer of air between the coated substrate and any water on the surface, water-based corrosion of the substrate is greatly reduced or entirely eliminated.

Simpson believes the number of possible applications will continue to expand as more people become aware of this technology.

"Staying dry in a rainstorm may only have a small personal value," Simpson said, "but reducing the energy required to transport products by boat or barge or extending the life of bridges or buildings would have a great value to society and individuals alike."

####

About Oak Ridge National Laboratory
UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. Simpson is a member of the Engineering Science and Technology Division. This research was funded by the Laboratory Directed Research and Development program.

For more information, please click here

Contacts:
Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Marine/Watercraft

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project