Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NJIT professor obtains patent to uncover trace elements of airborne pollutants

Abstract:
A breakthrough patent awarded to a New Jersey Institute of Technology (NJIT) researcher will enable manufacturers to create a device to uncover miniscule amounts of airborne pollutants. Using computer chip technology, Somenath Mitra, PhD, professor and chair of NJIT's Department of Chemistry and Environmental Sciences, has developed and patented what could eventually become a simple keychain device to detect tiny, though potentially lethal, amounts of airborne carcinogens.

NJIT professor obtains patent to uncover trace elements of airborne pollutants

Newark, NJ | Posted on March 20th, 2007

Calling the invention a microconcentrator, Mitra said his NJIT research team has created a novel, cost-effective and efficient method to concentrate pollutants. By doing so, pollutants can then be introduced onto a sensor to identify trace pollutants.

"Our chip has a polymer enabling it to concentrate the pollutants and a tiny built-in heater that drives them onto the sensor," Mitra said. "It works like a bicycle pump. First our chip accumulates the pollutants as a pump fills with air. Then, the chip directs the tiny heater to send a large enough sampling of pollutants—if they exist-- to the sensor's head. With a large sample, the sensor can recognize that pollutants exist."

"A Microfabricated Microconcentrator For Sensors and Gas Chromatography," US Patent 7147695B2, was awarded to Mitra in December of 2006. Research about the invention was previously published in Sensors and Materials ("Design and Fabrication of Microheaters for Microfluidic Channels") in 2006 and The Journal of Chromatography A ("A Microfabricated Microconcentrator for Sensors and Gas Chromatography") in 2003.

"The value of our sensing system is that it can see pollutants even when they are present at very low concentrations," said Mitra. "Down the road, we hope to see this technology pave the way for developing a small, inexpensive device to fit on a key chain. These devices would do the same job as larger instruments used in chemical laboratories for monitoring organic and other pollutants in air and water."

Although many advances have been made in science, it is still not as simple as many people imagine for scientists to monitor pollutants. The consequences from automobile exhaust, the dilution of cleaning solvents in air or the problems that occur when tankers spill gasoline, remain of concern to scientists.

"Typical concentrations of many pollutants can be small--only a few molecules of pollutants in every part per billion of air or water molecules," Mitra said. "But even at these levels, these pollutants pose a threat to human and public health."

"For example, we know that benzene, a by-product of automobile exhaust, causes cancer," Mitra said. "The organics from auto exhaust fumes also lead to smog formation in urban areas like Los Angeles. Measuring benzene and similar chemicals, though, is costly and difficult. One must have access to large instruments that cost thousands of dollars. But using the microconcentrator, this will no longer be the case."

Although the market currently features affordable miniature sensors, the technology is not there yet for the tiniest amounts of pollutants, said Mitra. "I'm talking about creating an instrument sensitive enough to measure concentrations of pollutants such as benzene, which may range in just a few parts per million or even billion."

Mitra's research interests are two-pronged. He looks for novel analytical techniques and sensors to discover low-level trace elements in air, water and soil. His current projects include developing instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro-scale, lab-on-a-chip devices.

Mitra also looks for new ways to assemble and modify carbon nanotubes to create novel and new materials to be used in applications ranging from tennis rackets to rocket ships. Other uses might include developing smaller nano chips for electronics (also known as nano-electronics) and inexpensive, high-performance throw-away chemical sensors. The latter might range from sensors for clinical diagnostic purposes to using sensors to find toxic chemicals in air, food or water.

Mitra has published 70 journal papers and is the coauthor of Environmental Chemical Analysis (CRC Press, New York, 1998). He also edited Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds five patents and has made more than 150 presentations conferences.

Mitra received his PhD from Southern Illinois University in 1988.

####

About New Jersey Institute of Technology
NJIT, New Jersey's science and technology university, at the edge in knowledge, enrolls more than 8,000 students in bachelor's, master's and doctoral degrees in 92 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. In 2006, Princeton Review named NJIT among the nation's top 25 campuses for technology and top 150 for best value. U.S. News & World Report's 2007 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities.

For more information, please click here

Contacts:
Sheryl Weinstein

973-596-3436

Copyright © New Jersey Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Sports

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project