Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spin photonics to move forward with new anapole probe

CREDIT
by Fanfei Meng, Aiping Yang, Kang Du, Fengyang Jia, Xinrui Lei, Ting Mei, Luping Du, and Xiaocong Yuan
CREDIT by Fanfei Meng, Aiping Yang, Kang Du, Fengyang Jia, Xinrui Lei, Ting Mei, Luping Du, and Xiaocong Yuan

Abstract:
Topological nontrivial spin textures are intriguing in various physical systems, ranging from high energy to condensed matter physics. The magnetic Skyrmions formed by a swirling magnetization in magnetic materials have potential applications in high-density magnetic information storage and transfer. Moreover, photonic analogues of magnetic Skyrmions were proposed and demonstrated recently in both 2D and 3D forms. The deep-subwavelength features of spin structures provide novel tools for optical metrology, including high-precision displacement sensing and monitoring of magnetic domains.

Spin photonics to move forward with new anapole probe

Changchun, China | Posted on November 4th, 2022

In a new paper published in Light Science & Applications, a team of scientists led by Professors Luping Du and Xiaocong Yuan from Shenzhen University have developed a unique anapole probe to measure the photonic spin structures dominated by magnetic fields. Their paper, "Measuring the magnetic topological spin structure of light using an anapole probe," indicated that their proposed methods could be valuable in advancing spin photonics.

The previous Skyrmion structures of light were observed in surface plasmon polaritons with electric fields dominating their wave properties. Many approaches have been proposed to map the electric-field distributions at near field, including fluorescence imaging, photoemission electron microscopy and near-field scanning optical microscopy (NSOM) with fiber probes or nanoscatters.

In addition to the electric part in optical spin, the magnetic part is essential for transverse electric (TE) modes (H-type waves). Although several near-field mapping techniques have been developed for characterizing the magnetic fields, either using an NSOM probe with specific apex or high refractive index nanoparticles, they succumb to inevitable influences from the electric field. It would affect the vector properties of the measured magnetic field and impair the system's robustness in characterizing the topological spin properties associated with the magnetic fields. The anapole mode of nanoparticles with pure magnetic field response might be a great solution. It has drawn much attention to near-field optics and nano-optics.

The researchers proposed a unique magnetic probe with an anapole mode (hereafter named the anapole probe). It would help measure the topological spin structures of evanescent waves governed by magnetic fields. The probe comprises an Ag-core and Si-shell nanosphere, for which the excited electric dipole and toroidal dipole modes experience destructive interference. The anapole forms the anapole mode and suppresses scattered radiation caused by electric fields. This anapole mode overlaps with a strong magnetic dipole resonance, which guarantees a high detection efficiency of the magnetic field.

A home-built near-field scanning system utilizing the anapole probe was assembled and with which the magnetic topological spin structures of the TE mode were characterized for the first time, including individual photonic Skyrmions and Skyrmion/Meron lattices. With high sensitivity and precision, the proposed method may become a valuable tool for studying the underlying physical processes related to the magnetic field components of light and facilitate the development of applications, including data storage, metrology, optical tweezers, and chiral nanoscopy.

####

For more information, please click here

Contacts:
Media Contact

Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851
Expert Contact

Luping Du
Shenzhen University, China

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Magnetism/Magnons

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

2 Dimensional Materials

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Skyrmions

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Search for strange Skyrmion phenomenon fails but finds stranger magnetic beaded necklace: Physicists on the hunt for a rarely seen magnetic spin texture have discovered another object that bears its hallmarks, hidden in the structure of ultra-thin magnetic films, that they have c April 2nd, 2021

The ICN2 co-leads a roadmap on quantum materials September 29th, 2020

Possible Futures

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Spintronics

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Optical computing/Photonic computing

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Photonics/Optics/Lasers

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project