Home > Press > Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level
![]() |
The research has implications for everything from nuts and bolts to turbine engines. |
Abstract:
•Study shows anti-corrosive oxides develop new structures and compositions depending on how fast the film develops
•Findings could help slow age-old problem of corrosion
•‘Opens the door to drastically new ways of protecting metals,’ researcher says
Corrosion is an age-old problem that is estimated to cost about $1 trillion a year, or about 5 percent of the U.S. gross domestic product. Corrosion of metals can be particularly bad, but fortunately they are normally protected from catastrophic damage by naturally forming, super-thin oxide films.
Traditionally, these protective films have been viewed as simple oxides of well-anticipated compounds, but new work from scientists at Northwestern University, the University of Virginia and the University of Wisconsin-Madison reveals dramatic new insights into these oxide films.
Using state-of-the-art experimental techniques and theoretical modeling, the scientists were able to analyze oxide films at the atomic level, deciphering how the atoms are arranged in the oxides.
Their findings? The protective films develop new structures and compositions that depend on how fast the oxide film grows. The study’s authors say their findings could provide clues about how to make the protective films better -- perhaps much, much better.
It’s a breakthrough that could have implications for everything from nuts and bolts to high-technology batteries and turbine engines.
“This changes many things about how we understand these oxide films and opens the door to drastically new ways of protecting metals,” said Laurence Marks, professor of materials science and engineering at Northwestern’s McCormick School of Engineering, who led the study. “We now know that there are ways to predict the chemical composition of these films, something we can exploit so the protective films last much longer.”
The study was published today (Oct. 3) by the journal Physical Review Letters.
“We now have more routes than ever to control and tune oxides to protect materials,” said John Scully, the Charles Henderson Chaired Professor and Chair of the Department of Materials Science and Engineering at the University of Virginia and one of the study’s authors.
“This provides key information about how to design new materials that will corrode far less,” said Northwestern’s Peter Voorhees, another of the study’s authors. Voorhees is the Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern Engineering.
The team studied, in detail, the oxides that form on alloys composed of nickel and chromium, which are widely used in a variety of products, such as the heating elements of a household toaster or in aircraft engines.
These oxides are also used for applications when there is water present, such as in dental implants. It has long been known that these oxides work when hot and resist corrosion in the mouth because of the formation of an oxide of chromium. It was assumed that the nickel formed a separate oxide, or in some cases dissolved away in the body. The team found something unexpected -- that the oxide was not just chromium and oxygen, but instead contained a very large number of nickel atoms.
Why? Because the nickel atoms do not have time to escape from the oxide, becoming captured inside it. The fraction that is captured depends upon how fast the oxide grows. If it grows very slowly, the nickel atoms can escape. If it grows very fast, they cannot.
This occurs both when the metals are reacting with oxygen from the air at high temperatures, as well as when they are reacting with water in ships or in dental implants. The atoms that are captured in the oxide change many of the properties, the study’s authors say.
The findings mean it is possible to deliberately trap atoms into these oxides in new ways, and thus change how they behave.
“We are close to the limits of what we can do with aircraft engines, as one example,” said John Perepezko, the IBM-Bascom Professor of Materials Science and Engineering at the University of Wisconsin-Madison and another of the study’s authors. “This new vision of protective oxide formation leads to many new ways one could build better engines.”
The title of the paper is “Non-equilibrium Solute Capture in Passivating Oxide Films.”
The research was supported by an Office of Naval Research Multidisciplinary University Research Initiative (MURI) award (grant number N00014-16-1-2280).
####
For more information, please click here
Contacts:
Megan Fellman
847-491-3115
Source contacts:
Laurence Marks
John Scully
Copyright © Northwestern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Aerospace/Space
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |