Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more

Sandip Ghosal
Sandip Ghosal

Abstract:
Research presented in a new paper co-authored by Northwestern University associate professor of mechanical engineering Sandip Ghosal sheds new light on how polymers cross tiny pores ten thousand times smaller than a human hair.

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more

Evanston, IL | Posted on September 5th, 2017

These findings could propel a deeper understanding of the biophysics of living cells, the measurement of polymer properties in diverse chemical industries such as plastics manufacturing and food processing, and the design of biosensors.

In the paper published Aug. 30 in Nature Communications, Ghosal and his co-authors present data showing how the speed of DNA changes as it enters or exits a nanopore. Surprisingly, the experiment showed that DNA molecules move faster as they enter a nanopore (forward translocation) and slower when they exit (backward translocation).

What's happening with the DNA, Ghosal explains, is something familiar to mechanical engineers: a concept called "buckling," studied by great scientific minds like Leonhard Euler and Daniel Bernoulli more than two centuries ago, but rarely studied at the molecular level.

Ghosal and his collaborators concluded that DNA molecules buckle under the influence of compressive forces when entering the nanopore, but are pulled straight by tensile forces when moving in the opposite direction. The resulting difference in the geometric configuration results in greater hydrodynamic drag on the molecule in the latter case.

The study was motivated by a desire to understand, in detail, the mechanics of a DNA molecule's passage through a nanopore, a subject of rich scientific curiosity and conjecture.

"We wanted to know what is happening to the DNA and why," says Ghosal, who also holds a courtesy appointment in the Department of Engineering Sciences and Applied Mathematics.

Rather than simply determining the DNA's average speed of translocation, Ghosal's U.K.-based collaborators - Ulrich F. Keyser, Maria Ricci, Kaikai Chen from the University of Cambridge, and Nicholas A.W. Bell, now of the University of Oxford -designed an innovative experiment to reveal the actual variation of the DNA's speed by inserting markers along the DNA molecule. This "DNA ruler" allowed the researchers to measure the speed of translocation at each instant. To then collect large amounts of data within a relatively short time period, the researchers repeatedly flipped the voltage across the pore, sending the DNA in and out of the nanopore in a "ping-pong" mode.

The group's work builds on the "resistive pulse" technique introduced nearly 20 years ago for detecting and characterizing single molecules. That idea has since been applied to a variety of research, including the search for an ultra-fast method of DNA sequencing and the effort to rapidly measure the mechanical properties of cells.

Ghosal describes his team's work as a potential "first step in extending the resistive pulse method to determining the mechanical characteristics of polymers."

Though Ghosal admits the work itself is purely curiosity-driven research designed to probe what more can be done with the resistive pulse technique, the findings could nevertheless have real-world applications in any area where the measurement of polymer properties is important.

"Each polymer has a characteristic load at which it will buckle and, therefore, the difference between the forward and backward translocation times provide a way of gauging the bending rigidity of polymers," Ghosal said. "It is incredibly exciting that we can now observe this," Ghosal says.

####

For more information, please click here

Contacts:
Emily Ayshford

847-467-1194

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project