Home > Press > Rare-earths become water-repellent only as they age
![]() |
Rare earth oxides (red/orange) react with gaseous organic compounds from the ambient air to form carbonates and hydroxides (grey/white). Through this reaction, the surface develops water-repelling properties. CREDIT University of Basel, Department of Physics |
Abstract:
Surfaces that have been coated with rare earth oxides develop water-repelling properties only after contact with air. Even at room temperature, chemical reactions begin with hydrocarbons in the air. In the journal Scientific Reports, researchers from the University of Basel, the Swiss Nanoscience Institute and the Paul Scherrer Institute report that it is these reactions that are responsible for the hydrophobic effect.
Rare earths are metals found in rare earth minerals. They are used today in, among other things, automotive catalytic converters and batteries, in the production of screens and lamps, and as a contrast agent in magnetic resonance imaging. Their broad range of applications means that there is a high demand for rare earths, and this demand is constantly increasing.
Additional uses for rare earths were opened up after American researchers reported in 2013 that surfaces that have been coated with rare earth oxides become water-repellent.
Scientists from the University of Basel, the Swiss Nanoscience Institute and the Paul Scherrer Institute have now worked with the company Glas Trösch to examine these hydrophobic properties more closely.
Water-repellency develops only after chemical reactions
The researchers coated glass pieces with rare earth oxides, nitrides and fluorides and analyzed how well they could be wetted with water.
They could not detect any hydrophobic properties when the coating was freshly deposited. It was only chemical reactions with gaseous hydrocarbons found in the ambient air that increased the surfaces' roughness and reduced wetting by water.
The gaseous organic compounds from the ambient air are first adsorbed by the surface and then react with the oxides to form carbonates and hydroxides until the surface is completely covered with these compounds. This process takes place even at room temperature.
"We were surprised that the hydrophobic effect was caused by the surface aging," says Professor Ernst Meyer, from the Department of Physics at the University of Basel, commenting on the results of the project supported by the Commission for Technology and Innovation (CTI). These conclusions are very revealing from a scientific point of view because catalytic processes also frequently take place at room temperature, which makes it important to understand the surface's physical properties.
The examined materials are, however, unsuitable for the industrial production of water-repellent glass surfaces, because the glass requires a sophisticated storage process before it shows the desired hydrophobic characteristics.
####
For more information, please click here
Contacts:
Ernst Meyer
41-612-073-724
Copyright © University of Basel
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Water
Taking salt out of the water equation October 7th, 2022
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |