Home > Press > Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption
This is an illustration of a silicon photonic micro-disk modulator operating at cryogenic temperatures. Light traveling down the silicon waveguide couples to the resonance of the micro-disk cavity. An electrical signal applied to the disk shifts the resonance and as a result modulates the light passing through the waveguide. (Rendered by Hanqing Kuang) CREDIT Michael Gehl, Sandia National Laboratories |
Abstract:
A silicon optical switch newly developed at Sandia National Laboratories is the first to transmit up to 10 gigabits per second of data at temperatures just a few degrees above absolute zero. The device could enable data transmission for next-generation superconducting computers that store and process data at cryogenic temperatures. Although these supercomputers are still experimental, they could potentially offer computing speeds ten times faster than today's computers while significantly decreasing power usage.
The fact that the switch operates at a range of temperatures, offers fast data transmission and requires little power could also make it useful for transmitting data from instruments used in space, where power is limited and temperatures vary widely.
"Making electrical connections to systems operating at very cold temperatures is very challenging, but optics can offer a solution," said lead researcher Michael Gehl, Sandia National Laboratories, New Mexico. "Our tiny switch allows data to be transmitted out of the cold environment using light traveling through an optical fiber, rather than electricity."
In The Optical Society's journal for high impact research, Optica, Gehl and his colleagues describe their new silicon micro-disk modulator and show that it can transmit data in environments as cold as 4.8 Kelvin. The device was fabricated with standard techniques used to make CMOS computer chips, which means it can be easily integrated onto chips containing electronic components.
"This is one of the first examples of an active silicon optical device operating at such a low temperature," said Gehl. "Our device could potentially revolutionize technologies that are limited by how fast you can send information in and out of a cold environment electrically."
Optics excels at low temperatures
For low-temperature applications, optical methods provide several benefits over electrical data transmission. Because electrical wires conduct heat, they often introduce heat into a system that needs to stay cold. Optical fibers, on the other hand, transmit almost no heat. Also, a single optical fiber can transmit more data at faster rates than an electrical wire, meaning that one fiber can do the job of many electrical connections.
The micro-disk modulator requires very little power to operate -- around 1000 times less power than today's commercially available electro-optical switches -- which also helps reduce the heat the device contributes to the cold environment.
To make the new device, the researchers fabricated a small silicon waveguide (used to transmit light waves) next to a silicon micro-disk only 3.5 microns in diameter. Light coming through the waveguide moves into the micro-disk and travels around the disk rather than passing straight through the waveguide. Adding impurities to the silicon micro-disk creates an electrical junction to which a voltage can be applied. The voltage changes the material's properties in a way that stops the light from moving into the disk and allows it to instead pass through the waveguide. This means that the light signal turns off and on as the voltage switches on and off, providing a way to turn the ones and zeroes that make up electrical data into an optical signal.
Although other research groups have designed similar devices, Gehl and his colleagues are the first to optimize the amount of impurities used and the exact placement of those impurities to allow the micro-disk modulator to operate at low temperatures. Their approach could be used to make other electro-optical devices that work at low temperatures.
Low error rate
To test the micro-disk modulator, the researchers placed it inside a cryostat -- a small vacuum chamber that can cool what's inside to very low temperatures. The micro-disk modulator converted an electrical signal sent into the cryostat to an optical signal. The researchers then examined the optical signal coming out of the cryostat to measure how well it matched the incoming electrical data.
The researchers operated their device at room temperature, 100 Kelvin and 4.8 Kelvin with various data rates up to 10 gigabits per second. Although they observed a slight increase in errors at the highest data rate and lowest temperature, the error rate was still low enough for the device to be useful for transmitting data.
This work builds on years of effort to develop silicon photonic devices for optical communication and high performance computing applications, led by the Applied Photonics Microsystems group at Sandia. As a next step, the researchers want to demonstrate that their device works with data generated inside the low temperature environment, rather than only electrical signals coming from outside the cryostat. They are also continuing to optimize the performance of the device.
###
The research is supported by the U.S. Department of Energy's Laboratory Directed Research and Development program.
####
About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.
About Optica
Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.
For more information, please click here
Contacts:
Joshua Miller
202-416-1435
Rebecca B. Andersen
The Optical Society
+1 202.416.1443
Copyright © The Optical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||