Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds

Abstract:
Gallium nitride (GaN) has emerged as one of the most important and widely used semiconducting materials. Its optoelectronic and mechanical properties make it ideal for a variety of applications, including light-emitting diodes (LEDs), high-temperature transistors, sensors and biocompatible electronic implants in humans.

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds

Bethlehem, PA | Posted on October 31st, 2016

In 2014, three Japanese scientists won the Nobel Prize in physics for discovering GaN's critical role in generating blue LED light, which is required, in combination with red and green light, to produce white LED light sources.

Now, four Lehigh engineers have reported a previously unknown property for GaN: Its wear resistance approaches that of diamonds and promises to open up applications in touch screens, space vehicles and radio-frequency microelectromechanical systems (RF MEMS), all of which require high-speed, high-vibration technology.

The researchers reported their findings in August in Applied Physics Letters (APL) in an article titled "Ultralow wear of gallium nitride." The article's authors are Guosong Zeng, a Ph.D. candidate in mechanical engineering; Nelson Tansu, Daniel E. '39 and Patricia M. Smith Endowed Chair Professor in the Electrical and Computer Engineering department, and Director of the Center for Photonics and Nanoelectronics (CPN); Brandon A. Krick, assistant professor of mechanical engineering and mechanics; and Chee-Keong Tan '16 Ph.D., now assistant professor of electrical and computer engineering at Clarkson University.

GaN's electronic and optical properties have been studied extensively for several decades, said Zeng, the lead author of the APL article, but virtually no studies have been done of its tribological properties, that is, its resistance to the mechanical wear imposed by reciprocated sliding.

"Our group is the first to investigate the wear performance of GaN," said Zeng. "We have found that its wear rate approaches that of diamonds, the hardest material known."

Wear rate is expressed in negative cubic millimeters of Newton meters (Nm). The rate for chalk, which has virtually no wear resistance, is on the order of 10 2 mm3/Nm, while that of diamonds is between 10-9 and 10-10, making diamonds eight orders of magnitude more wear resistant than chalk. The rate for GaN ranges from 10¬-7 to 10-9, approaching the wear resistance of diamonds and three to five orders of magnitude more wear resistant than silicon (10-4).

The Lehigh researchers measured the wear rate and friction coefficients of GaN using a custom microtribometer to perform dry sliding wear experiments. They were surprised by the results.

"When performing wear measurements of unknown materials," they wrote in APL, "we typically slide for 1,000 cycles, then measure the wear scars; [these] experiments had to be increased to 30,000 reciprocating cycles to be measurable with our optical profilometer.

"The large range in wear rates (about two orders of magnitude)...can provide insight into the wear mechanisms of GaN."

That range in wear resistance, the researchers said, is caused by several factors, including environment, crystallographic direction and, especially, humidity.

"The first time we observed the ultralow wear rate of GaN was in winter," said Zeng. "These results could not be replicated in summer, when the material's wear rate increased by two orders of magnitude."

To determine how the higher summer humidity was affecting GaN's wear performance, the researchers put their tribometer in a glove box that can be backfilled with either nitrogen or humid air.

"We observed that as we increased the humidity inside the glove box, we also increased the wear rate of GaN," said Zeng.

Zeng gave a presentation about the Lehigh project in October at the International Workshop on Nitride Semiconductors (IWN 2016) in Orlando, Florida. The session at which he spoke was titled "Wear of Nitride Materials and Properties of GaN-based structures." Zeng was one of seven presenters at the session and the only one to discuss the wear properties of GaN and other III-Nitride materials.

Tansu, who has studied GaN for more than a decade, and Krick, a tribology expert, became curious about GaN's wear performance several years ago when they discussed their research projects after a Lehigh faculty meeting.

"Nelson asked me if anyone had ever investigated the friction and wear properties of gallium nitride," said Krick, "and I said I didn't know. We checked later and found a wide-open field."

Tansu said the group's discovery of GaN's hardness and wear performance could have a dramatic effect on the electronic and digital device industries. In a device such as a smartphone, he said, the electronic components are housed underneath a protective coating of glass or sapphire. This poses potential compatibility problems which could be avoided by using GaN.

"The wear resistance of GaN," said Tansu, "gives us the opportunity to replace the multiple layers in a typical semiconductor device with one layer made of a material that has excellent optical and electrical properties and is wear-resistant as well.

"Using GaN, you can build an entire device in a platform without multiple layers of technologies. You can integrate electronics, light sensors and light emitters and still have a mechanically robust device. This will open up a new paradigm for designing devices. And because GaN can be made very thin and still strong, it will accelerate the move to flexible electronics."

In addition to its unexpectedly good wear performance, said Zeng, GaN also has a favorable radiation hardness, which is an important property for the solar cells that power space vehicles. In outer space, these solar cells encounter large quantities of very fine cosmic dust, along with x-rays and gamma rays, and thus require a wear-resistant coating, which in turn needs to be compatible with the cell's electronic circuitry. GaN provides the necessary hardness without introducing compatibility issues with the circuitry.

The Lehigh group has begun collaborating with Bruce E. Koel, a surface chemistry expert and professor of chemical and biological engineering at Princeton University, to gain a better understanding of the interaction of GaN and water under contact. Koel was formerly a chemistry professor and vice president for research and graduate studies at Lehigh.

To determine the evolution of wear with GaN, the group has subjected GaN to stresses by running slide tests in which the slide distance and the corresponding number of cycles are varied. The group then uses an x-ray photoelectron spectrometer (XPS), which can identify the elemental composition of the first 12 nanometers of a surface, to scan the unworn surface of the GaN, the scar created by the slide machine, and the wear particles deposited by the slide machine on either side of the scar.

The group plans next to use aberration-corrected transmission electron microscopy to examine the lattice of atoms beneath the scar. Meanwhile, they will simulate a test in which the lattice is strained with water in order to observe the variations caused by deforming energy.

"This is a very new experiment," said Zeng. "It will enable us to see dynamic surface chemistry by watching the chemical reaction that results when you apply shear, tensile or compressive pressure to the surface of GaN."

####

For more information, please click here

Contacts:
Lori Friedman

610-758-3224

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Tansu:

And:

Krick:

Center for Photonics and Nanoelectronics:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project