Home > Press > NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology
![]() |
Abstract:
How can some things be so small, and yet so significant? A new video series produced by NBC Learn, the educational arm of the NBCUniversal News Group, in partnership with the National Science Foundation, sheds light on this question. "Nanotechnology: Super Small Science" features a dozen world-class American researchers, including quantum physicist and National Medal of Science winner Paul Alivisatos. This six-part series shows viewers how atoms and molecules that are thousands of times smaller than the width of a human hair can be used to create technology for the future.
"Today, we are learning to rearrange the basic atomic and molecular building blocks – foundational technology for understanding nature and creating things that were not possible before," said Mihail Roco, senior adviser of science and engineering at the National Science Foundation. "The videos NBC Learn created with the National Science Foundation illustrate the potential of nanotechnology.”
Narrated by NBC News and MSNBC anchor Kate Snow, “Nanotechnology: Super Small Science” will be available through NBC affiliate stations, and can also be seen for free online at NBCLearn.com, NSF.gov and Science360.gov.
“We’re proud to launch an original series that shows viewers how scientists and engineers manipulate material only billionths of a meter in size, and the powerful impact that can have on the world around them,” said Soraya Gage, vice president and general manager of NBC Learn. “Through our partnership with the National Science Foundation, we’re using our digital platform and journalistic expertise to explore how nanotechnology advances innovation in fields such as medicine, energy, and electronics.”
“For 15 years, more discoveries have come from nanotechnology than any other field of science and engineering. Now, its discoveries are penetrating all aspects of society – new industries, medicine, agriculture, and the management of natural resources," added Roco.
Viewers will learn how scientists are using nanotechnology to capture energy from the sun, increase the power of smaller microchips and computers, build structures that are lightweight and resilient, as well as much more from these videos:
“Nanotechnology: Harnessing the Nanoscale” – Why is something only billionths of a meter in size so important? Dawn Bonnell at the University of Pennsylvania shows how the ability to control and manipulate material at this extremely small scale is having a big impact around the world in medicine, energy, and electronics.
“Nanotechnology: A Powerful Solution” – Paul Alivisatos' team at the University of California, Berkeley, is working to develop a new type of solar cell using nano-sized crystals called quantum dots. Quantum dots are already helping to produce brighter, more vivid color in displays. The ability of solar cells to efficiently process energy in the form of light also makes them an ideal solution to our energy problems.
“Nanotechnology: Nanoelectronics” – You may have nanotechnology in your pocket and not even know it. Today's smartphones are much smaller than computers of the past, and yet significantly more powerful, thanks to nanotechnology. Tom Theis with the Semiconductor Research Corporation and IBM, and Ana Claudia Arias at the University of California, Berkeley, explain how nanotechnology has already changed our lives and the exciting possibilities for the future.
“Nanotechnology at the Surface” – How could something only billionths of a meter thick defend against water, dirt, wear, and even bacteria? Working at the nanoscale, scientists and engineers, like Jay Guo of the University of Michigan, are creating protective nanoscale coatings and layers. These surfaces have applications in energy, electronics, medicine, and could even be used to make a plane invisible.
“Nanotechnology: Nanoarchitecture” – Caltech's Julia Greer is proving that using big and heavy materials is not the only way to build strong, robust structures. Beginning at the nanoscale, her group is constructing materials that are more than 99 percent air yet strong and resilient. These new materials are breaking the rules by behaving in unexpected ways.
“Nanotechnology: Nano-Enabled Sensors and Nanoparticles” – Some of the biggest advances in medical technology may soon come from devices built on the nanoscale. Donglei Fan with the University of Texas at Austin, and Paula Hammond with Massachusetts Institute of Technology discuss how their use of nanotechnology may one day sense, diagnose, and even treat cancer.
####
About NBCUniversal News Group
The NBCUniversal News Group is one of the most influential and respected portfolios of on air and digital news properties in the world, reaching over 147 million people each month. The Group includes NBC News, a broadcast leader of global news and information for over 75 years and home to such respected programs as "NBC Nightly News with Lester Holt," "Today," "Meet the Press," and "Dateline;" MSNBC, the premiere destination for in-depth analysis of daily headlines, insightful political commentary and informed perspectives reaching more than 96 million households worldwide; CNBC, the recognized world leader in business news reaching more that 370 million homes worldwide as well as The Weather Channel and digital platforms including the NBC News Digital Group, MSNBC.com, CNBC.com. The NBCUniversal News Group also extends on its nationwide network of owned and affiliate stations, NBC News and CNBC Radio; as well as MSNBC on Sirius XM radio. For more information about NBCUniversal, please visit www.NBCUniversal.com.
About the National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2016, its budget is $7.5 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 48,000 competitive proposals for funding and makes about 12,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.
For more information, please click here
Contacts:
Tara Smith
NBCUniversal News Group
Lisa-Joy Zgorski
National Science Foundation
Copyright © NBCUniversal News Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Cancer
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Aerospace/Space
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |