![]() |
Abstract:
Researchers in the Cockrell School of Engineering at The University of Texas at Austin have solved a problem in micro- and nanofabrication -- how to quickly, gently and precisely handle tiny particles -- that will allow researchers to more easily build tiny machines, biomedical sensors, optical computers, solar panels and other devices.
Engineers at the Cockrell School of Engineering show bubble-pen lithography in action, including the generation of a microbubble and the depositing of nanoparticles in the shape of a UT Austin Longhorn.
Cockrell School of Engineering
They have developed a device and technique, called bubble-pen lithography, that can efficiently handle nanoparticles -- the tiny pieces of gold, silicon and other materials used in nanomanufacturing. The new method relies on microbubbles to inscribe, or write, nanoparticles onto a surface.
Researchers' interest in nanoparticles, which are between 1 and 100 nanometers in size, has grown rapidly because of their versatility and strength. Some nanoparticles have optical properties that are useful for electronics. Others have the ability to absorb solar energy. In biomedical applications, nanoparticles can serve as drug carriers or imaging agents.
But working with these particles while keeping their properties and functions intact can be difficult. And existing lithography methods, which are used to etch or pattern materials on a substrate, are not capable of fixing nanoparticles to a specific location with precise and arbitrary control.
A research team led by Texas Engineering assistant professor Yuebing Zheng has invented a way to handle these small particles and lock them into position without damaging them. Using microbubbles to gently transport the particles, the bubble-pen lithography technique can quickly arrange particles in various shapes, sizes, compositions and distances between nanostructures. This advanced control is key to harnessing their properties. The team, which includes Cockrell School associate professor Deji Akinwande and professor Andrew Dunn, describe their patented device and technique in a paper published in the Jan. 13 issue of Nano Letters.
Using their bubble-pen device, the researchers focus a laser underneath a sheet of gold nanoislands (nanoscale islands) to generate a hotspot that creates a microbubble out of vaporized water. The bubble attracts and captures a nanoparticle through a combination of gas pressure, thermal and surface tension, surface adhesion and convection. The laser then steers the microbubble to move the nanoparticle on a site on the surface. When the laser is turned off, the microbubble disappears, leaving the particle on the surface. If necessary, the researchers can expand or reduce the size of the microbubble by increasing or decreasing the laser beam's power.
"The ability to control a single nanoparticle and fix it to a substrate without damaging it could open up great opportunities for the creation of new materials and devices," Zheng said. "The capability of arranging the particles will help to advance a class of new materials, known as metamaterials, with properties and functions that do not exist in current natural materials."
The technique could be especially helpful for science and medicine because researchers would be able to precisely control cells, biological material, bacteria or viruses for study and testing, Zheng added.
Moreover, bubble-pen lithography can leverage a design software program in the same way as a 3-D printer, so it can deposit nanoparticles in real time in a pre-programmed pattern or design. The researchers were able to write the UT Austin Longhorn symbol and create a dome shape out of nanoparticle beads.
In comparison to other existing lithography methods, bubble-pen lithography has several advantages, Zheng says. First, the technique can be used to test prototypes and ideas for devices and materials more quickly. Second, the technique has the potential for large-scale, low-cost manufacturing of nanomaterials and devices. Other lithography techniques require more resources and a clean room environment.
Zheng says he hopes to advance bubble-pen lithography by developing a multiple-beam processing technique for industrial-level production of nanomaterials and nanodevices. He is also planning to develop a portable version of the technique that works like a mobile phone for use in prototyping and disease diagnosis.
This research received funding from the Beckman Young Investigator Award.
####
For more information, please click here
Contacts:
Sandra Zaragoza
830-734-7510
Copyright © The University of Texas at Austin
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |