Home > Press > Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication
Abstract:
A research team led by Prof. WU Dong from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) proposed a femtosecond laser 2-in-1 writing multi-material processing strategy to fabricate micromachined joints composed of temperature-sensitive hydrogels and metal nanoparticles, and developed multi-jointed humanoid micromachines with multiple deformation modes (>10). The results were published in Nature Communications.
In recent years, femtosecond laser two-photon polymerization, as a true three-dimensional fabrication technique with nanoscale precision, has been widely employed to produce various functional microstructures. These microstructures have shown great potential in areas such as micro-nano optics, microsensors, and microelectromechanical systems. However, the challenge remains in leveraging femtosecond lasers for multi-material processing and further constructing micro-nano mechanics with multi-modalities.
In this study, the femtosecond laser dual-function fabrication strategy involves using asymmetric two-photon polymerization to create hydrogel joints and locally depositing silver nanoparticles (Ag NPs) via laser reduction within the joints. This asymmetric light-polymerization technique induces anisotropy in cross-linking density within specific areas of the hydrogel micro-joints, ultimately enabling directional and angular-controllable bending deformations. The in-situ laser reduction deposition allows for precise fabrication of silver nanoparticles on the hydrogel joints. These nanoparticles exhibit strong photothermal conversion effects, enabling the multi-joint micromachinery to showcase ultra-fast response times (30 ms) and extremely low driving power (<10 mW) characteristics.
In particular, eight micro-joints were integrated into a humanoid micro-mechanism. Subsequently, utilizing spatial light modulation technology, multi-focal beams were achieved in 3D space to precisely stimulate each micro-joint. The collaborative deformation between multiple joints enables the humanoid micromachine to achieve various reconfigurable deformation modes, ultimately leading to a "dancing microrobots" at the micrometer scale. Lastly, as a proof of concept, by designing the distribution and deformation direction of the micro-joints, a dual-joint miniature mechanical arm can collect several micro-particles in both parallel and divergent directions.
The femtosecond laser dual-function fabrication strategy can construct deformable micro-joints in various 3D micro-structured areas, realizing multiple reconfigurable deformation modes. In the future, micromachinery with various deformation modes will open broad prospects in applications such as micro-goods collection, microfluidic manipulation, and cellular operations.
####
For more information, please click here
Contacts:
Jane Fan
University of Science and Technology of China
qfan@ustc.edu.cn
Copyright © University of Science and Technology of China
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Robotics
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |