Home > Press > New stretchable, wearable sensor made with chewing gum (video)
![]()  | 
Abstract:
Body sensors, which were once restricted to doctors' offices, have come a long way. They now allow any wearer to easily track heart rate, steps and sleep cycles around the clock. Soon, they could become even more versatile — with the help of chewing gum. Scientists report in the journal ACS Applied Materials & Interfaces a unique sensing device made of gum and carbon nanotubes that can move with your most bendable parts and track your breathing.
Scientists make a sticky, stretchy sensor out of chewing gum and nanotubes. 
Credit: American Chemical Society
Most conventional sensors today are very sensitive and detect the slightest movement, but many are made out of metal. That means when they're twisted or pulled too much, they stop working. But for sensors to monitor the full range of a body's bending and stretching, they need a lot more give. To meet that need, some researchers have tried developing sensors using stretchy plastics and silicones. But what they gained in flexibility, they lost in sensitivity. Malcolm Xing and colleagues found a better solution right under their noses — and in their mouths.
 
To make their supple sensor, a team member chewed a typical piece of gum for 30 minutes, washed it with ethanol and let it sit overnight. The researchers then added a solution of carbon nanotubes, the sensing material. Simple pulling and folding coaxed the tubes to align properly. Human finger-bending and head-turning tests showed the material could keep working with high sensitivity even when strained 530 percent. The sensor also could detect humidity changes, a feature that could be used to track breathing, which releases water vapor with every exhale. 
####
About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.  
For more information, please click here
Contacts:
Michael Bernstein 
202-872-6042
 
Katie Cottingham, Ph.D.
 
301-775-8455
Malcolm Xing, Ph.D. 
Department of Mechanical Engineering 
Faculty of Engineering 
University of Manitoba 
Children's Hospital Research Institute of Manitoba 
Winnipeg, Canada 
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Videos/Movies
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Flexible Electronics
    Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
    Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sports
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020
    Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||