Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Quantum dot' technology may help light the future

The orange color in the letters 'OSU' is produced from 'quantum dots' viewed under a microscope, as they absorb blue light and emit the light as orange -- an illustration of some of the potential of new technology being developed at Oregon State University.
CREDIT: Image courtesy of Oregon State University
The orange color in the letters 'OSU' is produced from 'quantum dots' viewed under a microscope, as they absorb blue light and emit the light as orange -- an illustration of some of the potential of new technology being developed at Oregon State University.

CREDIT: Image courtesy of Oregon State University

Abstract:
Advances at Oregon State University in manufacturing technology for "quantum dots" may soon lead to a new generation of LED lighting that produces a more user-friendly white light, while using less toxic materials and low-cost manufacturing processes that take advantage of simple microwave heating.

'Quantum dot' technology may help light the future

Corvallis, OR | Posted on August 19th, 2015

The cost, environmental, and performance improvements could finally produce solid state lighting systems that consumers really like and help the nation cut its lighting bill almost in half, researchers say, compared to the cost of incandescent and fluorescent lighting.

The same technology may also be widely incorporated into improved lighting displays, computer screens, smart phones, televisions and other systems.

A key to the advances, which have been published in the Journal of Nanoparticle Research, is use of both a "continuous flow" chemical reactor, and microwave heating technology that's conceptually similar to the ovens that are part of almost every modern kitchen.

The continuous flow system is fast, cheap, energy efficient and will cut manufacturing costs. And the microwave heating technology will address a problem that so far has held back wider use of these systems, which is precise control of heat needed during the process. The microwave approach will translate into development of nanoparticles that are exactly the right size, shape and composition.

"There are a variety of products and technologies that quantum dots can be applied to, but for mass consumer use, possibly the most important is improved LED lighting," said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering.

"We may finally be able to produce low cost, energy efficient LED lighting with the soft quality of white light that people really want," Herman said. "At the same time, this technology will use nontoxic materials and dramatically reduce the waste of the materials that are used, which translates to lower cost and environmental protection."

Some of the best existing LED lighting now being produced at industrial levels, Herman said, uses cadmium, which is highly toxic. The system currently being tested and developed at OSU is based on copper indium diselenide, a much more benign material with high energy conversion efficiency.

Quantum dots are nanoparticles that can be used to emit light, and by precisely controlling the size of the particle, the color of the light can be controlled. They've been used for some time but can be expensive and lack optimal color control. The manufacturing techniques being developed at OSU, which should be able to scale up to large volumes for low-cost commercial applications, will provide new ways to offer the precision needed for better color control.

By comparison, some past systems to create these nanoparticles for uses in optics, electronics or even biomedicine have been slow, expensive, sometimes toxic and often wasteful.

Oher applications of these systems are also possible. Cell phones and portable electronic devices might use less power and last much longer on a charge. "Taggants," or compounds with specific infrared or visible light emissions, could be used for precise and instant identification, including control of counterfeit bills or products.

###

OSU is already working with the private sector to help develop some uses of this technology, and more may evolve. The research has been supported by Oregon BEST and the National Science Foundation Center for Sustainable Materials Chemistry.

####

For more information, please click here

Contacts:
Greg Herman

541-737-2496

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Display technology/LEDs/SS Lighting/OLEDs

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project