Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lehigh University-DuPont tribology research seeks to reduce wear and waste

Abstract:
Friction and wear consume 2 to 6 percent of an industrialized nation’s GDP. In the United States, that amounts to hundreds of billions of dollars each year. 

Lehigh University-DuPont tribology research seeks to reduce wear and waste

Bethlehem, PA | Posted on August 13th, 2015

New breakthroughs in the science of tribology—which deals with friction, wear and lubrication—could go a long way toward reducing wear and, ultimately, waste.

Brandon Krick, assistant professor of mechanical engineering at Lehigh University (Bethlehem, PA) and his collaborators at DuPont Inc. recently received a three-year grant to study tribology through the National Science Foundation’s Grant Opportunities for Academic Liaison with Industry (GOALI) program.

The Lehigh-DuPont team will develop and study ultralow-wear composite materials suitable for manufacturability and usage in commercial and industrial settings. Krick will serve as principal investigator on the project, with DuPont scientists Christopher Junk and Gregory Blackman serving as co-principal investigators and Lehigh graduate student Mark Sidebottom leading the experimental efforts.
"We are exploring how various material structures, composition, processing and operating conditions impact tribological performance," Krick reports. "We'll also gain a much more complete understanding of the mechanical and chemical processes involved in wearing down materials we're developing."

In simple terms, the researchers are studying Teflon, the fluoropolymer coating for cookware.

Teflon is cherished by consumers because it is non-adhesive and easy to clean, Krick notes, but its relatively rapid rate of wear makes it unsuitable for sliding applications and impossible to be injection-molded into desired shapes.

To overcome these limitations, Krick’s group is making nanocomposites of alumina and dispersing them as filler in the Teflon polymer matrix to modify the matrix and reduce its melting temperature.

He adds: “We have been able to reduce the wear rate for Teflon by 10,000 times for sliding applications. This is potentially game-changing. Typically, industry has to replace worn-out parts too often. They end up in landfills. We can cut costs and reduce this waste.” 

In the Lehigh Tribology Lab, Krick’s students examine the origins of friction, wear, materials deformation and adhesion on complex surfaces ranging from cells to nanocomposites and in environments ranging from the vacuum conditions of outer space to thousands of feet under water.
Krick and his colleagues at DuPont have been partners fighting wear for several years. DuPont supported much of Krick's work as a student and researcher at the University of Florida, and the relationship has carried over into his activities at Lehigh. "DuPont is one of the world's premier industrial scientific communities," says Krick. "Working with the DuPont team has been one of the most productive and rewarding collaborations of my life."

####

About Lehigh University
Lehigh is a premier private residential research university. We are ranked in the top tier of national research universities each year, and our four colleges have earned a reputation for their entrepreneurial and interdisciplinary approach to learning. Today, more than 75,000 alumni from around the world have earned a Lehigh diploma, and nearly 97 percent of last year’s graduates have gone on to find career-related opportunities just six months after leaving campus.

For more information, please click here

Contacts:
Lori Friedman
Associate Director of Media Relations
Lehigh University
Office: (610) 758-3224
Cell: (323) 377-4312

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Friction/ Tribology

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Three-dimensional Direction-dependent Force Measurement at the Subatomic Scale: International researchers led by Osaka University develop a microscopy technique to probe materials at the subatomic scale in multiple directions simultaneously May 11th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project