Home > Press > Slip sliding away: Graphene and diamonds prove a slippery combination
From left, researchers Ani Sumant, Ali Erdemir, Subramanian Sankaranarayanan, Sanket Deshmukh, and Diana Berman combined diamond, graphene, and carbon to achieve superlubricity. CREDIT: Photo by Mark Lopez / Argonne National Laboratory |
Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates the rare phenomenon of "superlubricity."
Led by nanoscientist Ani Sumant of Argonne's Center for Nanoscale Materials (CNM) and Argonne Distinguished Fellow Ali Erdemir of Argonne's Energy Systems Division, the five-person Argonne team combined diamond nanoparticles, small patches of graphene - a two-dimensional single-sheet form of pure carbon - and a diamond-like carbon material to create superlubricity, a highly-desirable property in which friction drops to near zero.
According to Erdemir, as the graphene patches and diamond particles rub up against a large diamond-like carbon surface, the graphene rolls itself around the diamond particle, creating something that looks like a ball bearing on the nanoscopic level. "The interaction between the graphene and the diamond-like carbon is essential for creating the 'superlubricity' effect," he said. "The two materials depend on each other."
At the atomic level, friction occurs when atoms in materials that slide against each other become "locked in state," which requires additional energy to overcome. "You can think of it as like trying to slide two egg cartons against each other bottom-to-bottom," said Diana Berman, a postdoctoral researcher at the CNM and an author of the study. "There are times at which the positioning of the gaps between the eggs - or in our case, the atoms - causes an entanglement between the materials that prevents easy sliding."
By creating the graphene-encapsulated diamond ball bearings, or "scrolls", the team found a way to translate the nanoscale superlubricity into a macroscale phenomenon. Because the scrolls change their orientation during the sliding process, enough diamond particles and graphene patches prevent the two surfaces from becoming locked in state. The team used large-scale atomistic computations on the Mira supercomputer at the Argonne Leadership Computing Facility to prove that the effect could be seen not merely at the nanoscale but also at the macroscale.
"A scroll can be manipulated and rotated much more easily than a simple sheet of graphene or graphite," Berman said.
However, the team was puzzled that while superlubricity was maintained in dry conditions, in a humid environment this was not the case. Because this behavior was counterintuitive, the team again turned to atomistic calculations. "We observed that the scroll formation was inhibited in the presence of a water layer, therefore causing higher friction," explained co-author Argonne computational nanoscientist Subramanian Sankaranarayanan.
While the field of tribology has long been concerned with ways to reduce friction - and thus the energy demands of different mechanical systems - superlubricity has been treated as a tough proposition. "Everyone would dream of being able to achieve superlubricity in a wide range of mechanical systems, but it's a very difficult goal to achieve," said Sanket Deshmukh, another CNM postdoctoral researcher on the study.
"The knowledge gained from this study," Sumant added, "will be crucial in finding ways to reduce friction in everything from engines or turbines to computer hard disks and microelectromechanical systems."
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
For more information, please click here
Contacts:
Jared Sagoff
630-252-5593
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
MEMS
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||