Home > Press > Record high sensitive Graphene Hall sensors
Abstract:
In the era of modern world, numerous types of magnetic field sensors are being used in different applications. The magnetic field sensors market has gained ample demand recently due to humongous increase in vehicle production, gaming consoles, consumer electronics industry, homeland security, healthcare, aerospace, the defense industry, etc. These magnetic field sensors are famously in demand for precise measurements of position, proximity and motion. The most popular types of magnetic field sensors are Hall Effect, magneto resistive and SQUID. According to recent market reports, the total shipment in the year 2013 for the magnetic field sensors was recorded to be 6.5 billion units. This figure is expected to reach up to 9.6 billion units by 2020. From business point of view, this market has earned $1.8 billion in 2014 and likely to reach up to $2.9 billion by year 2020. Out of these various types Hall Effect sensors are more cost effective, durable and can be handled with ease.
The most commonly used Hall Effect devices are fabricated with Silicon. The important figure of merits of Hall sensors are voltage and current - related sensitivities. These sensitivities depend on the device materials electronic properties such as charge carrier mobility and density. However, for futuristic advanced applications requires higher sensitivity Hall sensors. The other well-known materials are based on high purity III/V semiconductors like GaAs or InAs based heterostructures. Though lot of efforts has been gone in developing sensors using these materials, sensitivity values are restricted.
Now the researchers from Germany at RWTH University and AMO GmbH Aachen have fabricated ultra-high sensitive Hall Effect sensors using single layer graphene. The results are published in Applied Physics Letters. Graphene, two dimensional atomic form of carbon, is a potential candidate for highly-sensitive Hall sensors because of its very high carrier mobility at room temperature and very low carrier densities. These properties make graphene a material that can outperform all currently existing Hall sensor technologies.
Researchers have protected the graphene from ambient contaminations by encapsulating it with hexagonal boron nitride layers; another highly promising 2D insulating material. The fabricated devices show a voltage and current normalized sensitivity of up to 3 V/VT and 5700 V/AT, respectively. These values are more than one order of magnitude above the values achieved in Silicon based and a factor of two above the values achieved with the best III/V semiconductors Hall sensors in ambient conditions. In addition, these results are far better than the earlier reported graphene Hall sensors on Silicon oxide and Silicon carbide substrates.
This new sensitivity level will enable devices with higher precision, lower energy consumption with smaller dimensions. This work will show new light for using graphene in more commercial applications, as Hall sensors are integral part of many household appliances. The research work is supported by the EU Graphene Flagship project (Contract No. NECT-ICT-604391) and the ERC (GA-Nr. 280140).
Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Jan Dauber, Abhay A. Sagade, Martin Oellers, Kenji Watanabe, Takashi Taniguchi, Daniel Neumaier, and Christoph Stampfer. App. Phys. Lett. 106, 193501 (2015); doi: 10.1063/1.4919897.
####
For more information, please click here
Contacts:
Dr. Abhay Sagade
Dept. of Engineering,
University of Cambridge, UK.
Copyright © University of Cambridge
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||